Skip to content

Un nouveau développement permet d’implanter des implants cérébraux de niveau supérieur

Les chercheurs révolutionnent les interfaces cerveau-ordinateur à l’aide de l’électronique au silicium

Dans le nouveau projet DARPA, les chercheurs exploitent les dernières technologies dans l’électronique au silicium pour inventer un dispositif d’interface neuronale implantable qui pourrait transformer la façon dont les systèmes artificiels améliorent les fonctions du cerveau.

Aujourd’hui, les dispositifs d’électrodes implantées pour stimuler le cerveau sont des dispositifs extrêmement grossiers avec une poignée d’électrodes qui sont utilisées pour atténuer les effets de la maladie de Parkinson, de l’épilepsie et d’autres affections neurodégénératives. Le nombre de patients avec ces dispositifs représente seulement des dizaines de milliers en raison de l’extrême invasivité du processus d’implantation et de la grande taille du dispositif implanté. L’invention d’un dispositif d’implant moins invasif avec de nombreux autres canaux qui peuvent interagir avec le cerveau entraînerait des améliorations révolutionnaires dans les interfaces cerveau-machine, y compris les interfaces directes avec le cortex auditif et le cortex visuel, en augmentant de manière spectaculaire la façon dont les systèmes artificiels peuvent prendre en charge la fonction cérébrale.

A flexible multielectrode array designed by Shepard and his team. If successful, this noninvasive device could alter the lives of people with hearing and visual impairments and neurodegenerative diseases. Credit: Ken Shepard

Grâce à une nouvelle subvention de 15,8 millions de dollars sur quatre ans de l’Agence pour les projets de recherche avancée de défense (DARPA) du département de la Défense des États-Unis (United States Department of Defense, abrégé par DoD), le professeur de Columbia Engineering, Ken Shepard, pionnier dans le développement de l’électronique qui interfère avec les systèmes biologiques, dirige une équipe pour faire exactement cela : inventez un dispositif d’interface neuronale implantable qui pourrait transformer la vie de personnes atteintes de maladies neurodégénératives ou de personnes qui ont une déficience visuelle et auditive.

« Ce sujet a attiré beaucoup d’intérêt venant du secteur privé, y compris les start-up Neuralink et Kernel », explique Shepard, professeur de génie électrique et d’ingénierie biomédical à Columbia Engineering. « Si nous réussissons, la petite taille et l’échelle massive de cet appareil pourraient donner la possibilité pour des interfaces transformationnelles au cerveau y compris des interfaces directes avec le cortex visuel qui permettraient aux patients qui ont perdu leur vue de discriminer des modèles complexes à des résolutions sans précédent. Il s’agit d’un projet très ambitieux pour Columbia, en effet pour nous tous, et nous sommes très heureux d’aborder une question aussi difficile. »

Le projet de Shepard se trouve dans le programme de R&D, Neural Engineering System Design (NESDconception de système d’ingénierie de neurones), une partie du plus grand programme de recherche du gouvernement fédéral : l’initiative BRAIN (BRAIN Initiative : Brain Research through Advancing Innovative Neurotechnologies – aussi appelé Brain Activity Map Project). NESD vise à développer une interface neuronale implantable qui peut fournir une résolution de signal sans précédent et une bande passante de transfert de données entre le cerveau et le monde numérique. L’équipe de Shepard comprend des chercheurs d’institutions de premier plan comme Baylor College of Medicine, California Institute of Technology, Duke University, New York University, Northwestern et Medtronic. À Columbia, le projet comprend Rafael Yuste (professeur de sciences biologiques et neurosciences, arts et sciences), Liam Paninski (professeur de statistique et de neurosciences, arts et sciences) et Luca Carloni (professeur d’informatique, ingénierie). L’équipe est axée sur la réalisation des objectifs NESD pour concevoir un dispositif d’interface neuronale implantable à l’échelle d’un million de canaux pour permettre l’enregistrement et la stimulation du cortex sensoriel. En outre, ils prévoient de demander l’approbation réglementaire pour commencer les expériences chez l’homme à la fin du programme de quatre ans.

« C’est un calendrier très agressif », note Shepard. « Nous pensons que le seul moyen d’y parvenir est d’utiliser une approche tout électrique qui implique un réseau d’enregistrement de surface massif avec plus d’un million d’électrodes fabriquées comme un dispositif monolithique sur un seul circuit intégré complémentaire en oxyde de métal-semiconducteur (CMOS). Nous travaillons avec Taiwan Semiconductor Manufacturing Company comme notre partenaire de fonderie ».

Compte tenu de la complexité et de l’ampleur des interfaces requises, Shepard et son équipe croient que le degré de non-invasion requis pour l’utilisation humaine dans ce délai agressif ne peut être réalisé qu’avec des architectures d’électrodes basées sur la stimulation et l’enregistrement sur la surface du cerveau. Bien que son approche soit fondée sur la pratique clinique humaine actuelle avec des matrices d’enregistrement en surface, la grande échelle et les exigences du programme NESD nécessitent un écart dramatique par rapport aux approches électriques antérieures des interfaces cerveau. Shepard croit que l’obtention de l’échelle requise pour NESD n’est possible que si son équipe exploite toutes les fonctionnalités de la technologie de pointe CMOS, ainsi que les capacités de fabrication associées de l’industrie, et utilise l’intégration monolithique des électrodes de stimulation/enregistrement avec une plate-forme électronique CMOS sous-jacente.

Les puces implantées sont ultra-conformes à la surface du cerveau, très légères et suffisamment souples pour se déplacer avec le tissu. La puce ne pénètre pas dans le tissu cérébral et utilise l’alimentation sans fil et la télémétrie de données. « En utilisant l’état de l’art dans la nanoélectronique au silicium et l’appliquant de manière inhabituelle, nous espérons avoir un impact important sur les interfaces cerveau-ordinateur », déclare Shepard. « Nous avons réuni une équipe de classe mondiale pour traduire nos efforts à des fins humaines à la fin de ce programme ».

Columbia University School of Engineering and Applied Science

* interface neuronale directe – aussi appelée IND ou BCI ou encore ICM (brain-computer interface : interface cerveau-machine, ou encore interface cerveau-ordinateur)

Laisser un commentaire