Skip to content

Démonstration de l’interface cerveau-machine de Neuralink

Lors d’une conférence diffusée en ligne depuis le siège de Neuralink à San Francisco, les scientifiques de la société ont fait le point sur les progrès réalisés. Cette conférence a eu lieu un peu plus d’un an après que Neuralink, fondée en 2016 dans le but de créer des interfaces cerveau-machine, ait révélé au monde sa vision, ses logiciels et sa plate-forme matérielle implantable.

Le prototype de Neuralink peut extraire des informations en temps réel de plusieurs neurones à la fois, a précisé Musk. Dans une démonstration en direct, les données du cerveau d’un porc ont été montrées à l’écran. Lorsque le porc a touché un objet avec son museau, les neurones capturés par la technologie de Neuralink (qui avaient été intégrés dans le cerveau du porc deux mois auparavant) se sont déclenchés lors d’une visualisation sur un écran.

Ce n’est pas nouveau en soi – Kernel et Paradromics font partie des nombreux groupes qui développent des puces de lecture cérébrale sous le crâne – mais Neuralink exploite de manière unique des fils conducteurs souples de type cellophane insérés dans les tissus à l’aide d’un robot chirurgical de type machine à coudre. Musk affirme avoir reçu le titre de « Breakthrough Device » en juillet et que Neuralink travaille avec la Food and Drug Administration (FDA) sur un futur essai clinique avec des personnes souffrant de paraplégie.

Les membres fondateurs de Neuralink, Tim Hanson et Philip Sabes de l’Université de Californie à San Francisco, ainsi que Michel Maharbiz, professeur à Berkeley, ont été les pionniers de cette technologie, et la version démontrée aujourd’hui est une amélioration par rapport à celle de l’année dernière. Musk l’appelle « V2 », et il est convaincu qu’un jour, il faudra moins d’une heure sans anesthésie générale pour l’intégrer dans un cerveau humain. Il affirme également qu’il sera facile à retirer et ne laissera aucun dommage durable, si un patient souhaite mettre à niveau ou se débarrasser de l’interface de Neuralink.

A ne pas manquer !  Un robot-pharmacien prépare les chimiothérapies

Neuralink a collaboré avec Woke Studios pour la conception de la machine qui est capable de voir l’intégralité du cerveau. Afshin Mehin, le concepteur en chef de Woke, a commencé à travailler avec Neuralink il y a plus d’un an sur un concept d’oreillettes que Neuralink a présenté en 2019, et les deux sociétés se sont réengagées peu après pour le robot chirurgical.

Neuralink machine

Crédit: Neuralink

La machine se compose de trois parties. Il y a une « tête », qui abrite des outils chirurgicaux automatisés, des caméras et des capteurs à balayage du cerveau, contre lesquels le patient place son crâne. Un appareil enlève d’abord une partie du crâne pour le remettre en place après l’opération. Ensuite, des algorithmes de vision par ordinateur guident une aiguille contenant des faisceaux de fils de 5 microns d’épaisseur et une couche isolante de 6 millimètres dans le cerveau, évitant ainsi les vaisseaux sanguins. (Selon Neuralink, la machine est techniquement capable de percer à des longueurs arbitraires). Les fils – qui mesurent un quart du diamètre d’un cheveu humain (4 à 6 μm) – sont reliés à une série d’électrodes situées à différents endroits et à différentes profondeurs. À sa capacité maximale, la machine peut insérer six fils contenant 192 électrodes par minute.

Neuralink machine

Crédit: Neuralink

Un sac à usage unique se fixe à l’aide d’aimants autour de la tête de la machine pour maintenir la stérilité et permettre le nettoyage, et des ailes inclinées autour de la façade intérieure assurent que le crâne du patient reste en place pendant l’insertion. Le « corps » de la machine se fixe sur une base, qui fournit un support lesté pour toute la structure, dissimulant les autres technologies qui permettent au système de fonctionner.

Neuralink machine

Crédit: Neuralink

Lorsqu’on lui a demandé si le prototype serait un jour utilisé dans des cliniques ou des hôpitaux, Mehin a précisé que la conception était destinée à une utilisation « à grande échelle ». « En tant qu’ingénieurs, nous savons ce qui est possible et comment communiquer les besoins de conception de manière compréhensible. De même, l’équipe de Neuralink est capable d’envoyer des schémas très complexes que nous pouvons utiliser », a-t-il déclaré. « Nous imaginons que cette conception pourrait être utilisée en dehors d’un laboratoire et dans n’importe quel cadre clinique ».

A ne pas manquer !  Des souris mutantes peuvent flairer des drogues ou des explosifs

Les principaux obstacles

Les interfaces cerveau-machine à haute résolution, ou BCI, sont complexes comme on peut s’y attendre : elles doivent être capables de lire l’activité des neurones pour déterminer quels groupes de neurones effectuent telles ou telles tâches. Les électrodes implantées sont bien adaptées à cela, mais historiquement, les limitations matérielles les ont amenées à entrer en contact avec plus d’une région du cerveau ou à produire du tissu cicatriciel qui interfère.

Cela a changé avec l’arrivée des électrodes biocompatibles très fines, qui réduisent la cicatrisation et peuvent cibler les groupes de cellules avec précision (bien que des questions subsistent quant à la durabilité). Ce qui n’a pas changé, c’est le manque de compréhension de certains processus neuronaux.

L’activité est rarement isolée dans les régions du cerveau, comme le lobe préfrontal et l’hippocampe. Elle se produit plutôt dans diverses régions du cerveau, ce qui la rend difficile à cerner. Ensuite, il faut traduire les impulsions électriques neurales en informations lisibles par la machine ; les chercheurs n’ont pas encore réussi à déchiffrer le codage du cerveau. Les impulsions du centre visuel ne sont pas comme celles produites lors de la formulation de la parole, et il est parfois difficile d’identifier les points d’origine des signaux.

Il incombera également à Neuralink de convaincre les organismes de réglementation d’approuver son dispositif pour les essais cliniques. Les interfaces cerveau-ordinateur sont considérées comme des dispositifs médicaux nécessitant un consentement supplémentaire de la FDA, et l’obtention de ce consentement peut être un processus long et coûteux.

Anticipant peut-être cela, Neuralink a exprimé son intérêt pour l’ouverture de son propre centre d’expérimentation animale à San Francisco, et la société a publié le mois dernier des offres d’emploi. En 2019, Neuralink a affirmé avoir effectué 19 opérations sur des animaux et avoir réussi à placer des fils dans 87 % des cas.

A ne pas manquer !  Exposition sur le Transhumanisme au CCCB à Barcelone jusqu'au 10/04

Tous ces défis n’ont pas découragé Neuralink, qui compte plus de 90 employés et a reçu un financement de 158 millions de dollars, dont au moins 100 millions de dollars de Musk.

Bien que Neuralink s’attende à ce que l’insertion des électrodes nécessite dans un premier temps de percer des trous dans le crâne, elle espère utiliser bientôt un laser pour percer l’os avec une série de petits trous, ce qui pourrait jeter les bases de la recherche visant à soulager des maladies comme la maladie de Parkinson et l’épilepsie et à aider les patients physiquement handicapés à entendre, parler, bouger et voir.

« Je pense qu’au moment du lancement, la technologie sera probablement … assez coûteuse. Mais le prix va très rapidement baisser », a déclaré Musk. « Nous voulons faire baisser le prix à quelques milliers de dollars, quelque chose comme ça. On devrait pouvoir l’obtenir de façon similaire au LASIK (chirurgie des yeux) ».

Laisser un commentaire

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur comment les données de vos commentaires sont utilisées.

Recommandé
Les expériences de manipulation mentale sur des sujets humains à…
Défiler vers le haut