Skip to content

Un dispositif biocompatible à commande magnétique

Les scientifiques qui travaillent à l’amélioration des dispositifs médicaux ont créé une nouvelle façon de fabriquer des machines de taille micro. Les machines, qui sont fabriquées à partir des matériaux biocompatibles, connus sous le nom d’hydrogel, pourraient être implantées dans le corps. Voici ce que l’ingénieur biomédical Sam Sia a dit au sujet de l’étude, les résultats ont été publiés dans la revue Science Robotics.

Quelle est l’idée derrière votre méthode de fabrication de périphérique?

Nous avons développé une méthode pour fabriquer de très petits dispositifs non à partir de silicium ou de métal, mais à base de matériaux biologiques. Ce sont les mêmes classes de matériaux trouvés dans votre corps, donc, ils sont intrinsèquement biocompatibles. Nous avons dû développer de nouvelles techniques de fabrication parce que les matériaux biologiques sont doux, et donc ils ne peuvent pas être traités de la même manière que le silicium ou le métal. Nous pouvons également déclencher leurs fonctions sans fil après l’implantation. Dans cette étude, nous utilisons le magnétisme pour déclencher des mouvements dans le microdispositif.

Quelles sont les utilisations potentielles pour ce type de microdispositif ?

À l’avenir, de tels microdispositifs implantés pourront potentiellement délivrer des médicaments [ou] réparer des organes à l’intérieur du corps, tous contrôlés sans fil. Nous développons différentes versions de l’appareil pour traiter différents problèmes médicaux.

In vivo movement of implantable MEMS device. (A) Schematic diagram of the Geneva drive device with payloads before implantation. Geneva drive devices are fabricated with fluorescent references (red and green fluorescent beads) to aid in vivo imaging to track the movement of the gears within the device. The reservoirs are filled with AF680-dextran and FITC-dextran solutions. (B) In vivo imaging shows the implanted Geneva drive device in the dorsum of the mouse. Fluorescent references are visible postimplantation. The device is in the “off” position. The inset shows the device as imaged by the Maestro Cri Imager before implantation. (C) Fluorescent images show operation of the Geneva drive device in an in vivo environment, including the position of the references within the device and hence the state of the device after each actuation. The animal protocol for this study was approved by the Institutional Animal Care and Use Committee of Columbia University.

In vivo movement of implantable MEMS device.
(A) Schematic diagram of the Geneva drive device with payloads before implantation. Geneva drive devices are fabricated with fluorescent references (red and green fluorescent beads) to aid in vivo imaging to track the movement of the gears within the device. The reservoirs are filled with AF680-dextran and FITC-dextran solutions. (B) In vivo imaging shows the implanted Geneva drive device in the dorsum of the mouse. Fluorescent references are visible postimplantation. The device is in the “off” position. The inset shows the device as imaged by the Maestro Cri Imager before implantation. (C) Fluorescent images show operation of the Geneva drive device in an in vivo environment, including the position of the references within the device and hence the state of the device after each actuation. The animal protocol for this study was approved by the Institutional Animal Care and Use Committee of Columbia University.

Résumé

Les microdispositifs implantables ont souvent des composants statiques plutôt que des pièces en mouvement et présentent une biocompatibilité limitée. Cet article montre une méthode de fabrication rapide qui peut produire des caractéristiques de matériaux biocompatibles jusqu’à des dizaines de micromètres d’échelle, avec des motifs complexes et composites dans chaque couche. En exploitant les propriétés mécaniques uniques des hydrogels, nous avons mis au point un «mécanisme de verrouillage» pour l’actionnement et le déplacement précis des pièces mobiles, qui peuvent fournir des fonctions telles que les vannes, les collecteurs, les rotors, les pompes et la livraison de charges utiles. Les composants hydrogels peuvent être réglés dans un large éventail de propriétés mécaniques et diffusives et peuvent être contrôlés après l’implantation sans alimentation prolongée. Dans un modèle de souris d’ostéosarcome (un cancer des os – la plus fréquente des tumeurs malignes prenant naissance dans l’os), le déclenchement de la libération de doxorubicine de l’appareil pendant 10 jours a montré une efficacité de traitement élevée et une toxicité faible, à 1/10 de la dose de chimiothérapie systémique standard. Globalement, cette plate-forme, appelée systèmes microélectromécaniques implantables ou iMEMS (des micromachines implantables  (implantable MEMS)), permet le développement de microdispositifs implantables biocompatibles avec une large gamme de composants mobiles mouvants qui peuvent être contrôlés sans fil à la demande, de manière à résoudre les problèmes d’alimentation et de biocompatibilité des appareils.

Science Robotics  04 Jan 2017:
Vol. 2, Issue 2,
DOI: 10.1126/scirobotics.aah6451

Un commentaire »

Laisser un commentaire

Entrez vos coordonnées ci-dessous ou cliquez sur une icône pour vous connecter:

Logo WordPress.com

Vous commentez à l'aide de votre compte WordPress.com. Déconnexion / Changer )

Image Twitter

Vous commentez à l'aide de votre compte Twitter. Déconnexion / Changer )

Photo Facebook

Vous commentez à l'aide de votre compte Facebook. Déconnexion / Changer )

Photo Google+

Vous commentez à l'aide de votre compte Google+. Déconnexion / Changer )

Connexion à %s

%d blogueurs aiment cette page :