HCQ est efficace pour la COVID-19 lorsqu’elle est utilisée tôt

Analyse de 172 études (version du 18 décembre 2020)

⇒La HCQ est efficace pour la COVID-19. La probabilité qu’un traitement inefficace génère des résultats aussi positifs que les 172 études réalisées à ce jour est estimée à 1 sur 4 quadrillions (p = 0.00000000000000023).

⇒Le traitement précoce est le plus efficace, 100% des études faisant état d’un effet positif et une réduction estimée à 65% de l’effet mesuré (décès, hospitalisation, etc.) en utilisant une méta-analyse des essais randomisés, RR 0.35 [0.27-0.46].

⇒91% des essais contrôlés randomisés (ECR) pour le traitement précoce, la PrEP ou la PEP font état d’effets positifs, la probabilité que cela se produise pour un traitement inefficace est de 0.0059.

⇒Il existe des preuves de biais en faveur de la publication de résultats négatifs. 88% of prospective studies report positive effects, and only 78% of retrospective studies do.

⇒Un nombre nettement plus important d’études en Amérique du Nord font état de résultats négatifs par rapport au reste du monde, p = 0.00001.



Figure 1. A.
Figure 1. B
Figure 1. A. Diagramme de dispersion montrant la distribution des effets signalés dans les premières études de traitement et dans toutes les études (les lignes verticales et les cases ombragées indiquent la médiane et l’intervalle interquartile). Un traitement précoce est plus efficace. B et C. Résultats des études classés par date, la ligne indiquant la probabilité que la fréquence observée de résultats positifs soit due au hasard d’un traitement inefficace.

Introduction

Nous analysons toutes les études importantes concernant l’utilisation de la HCQ (ou CQ) pour la COVID-19. Les méthodes de recherche, les critères d’inclusion, les critères d’extraction des effets (les résultats les plus graves sont prioritaires), les réponses PRISMA, les méthodes statistiques et les résultats des études individuelles sont détaillés à l’annexe 1. Nous présentons les résultats de la méta-analyse des effets randomisés pour toutes les études, pour les études au sein de chaque étape de traitement, pour les résultats de mortalité uniquement, après exclusion des études présentant un biais critique, et pour les essais contrôlés randomisés (ECR) uniquement. Les méta-analyses typiques impliquent des critères de sélection subjectifs et une évaluation des biais, ce qui nécessite une compréhension des critères et de la précision des évaluations. Toutefois, le volume des études offre la possibilité d’une analyse supplémentaire simple et transparente permettant de détecter les effets.

Si le traitement n’était pas efficace, les effets observés seraient distribués de manière aléatoire (ou plus probablement négatifs si le traitement est nocif). Nous pouvons calculer la probabilité que le pourcentage observé de résultats positifs (ou plus) puisse être dû au hasard avec un traitement inefficace (the probability of >= k heads in n coin tosses, or the one-sided sign test / binomial test). L’analyse de publication des biais est importante et des ajustements peuvent être nécessaires s’il existe un biais vers la publication de résultats positifs. Pour la HCQ, nous trouvons des preuves d’un biais vers la publication de résultats négatifs.

Figure 2. Étapes du traitement.

La figure 2 montre les étapes d’un traitement possible pour la COVID-19. La prophylaxie pré-exposition (PrEP) consiste à prendre régulièrement des médicaments avant d’être infecté, afin de prévenir ou de minimiser l’infection. Dans la prophylaxie post-exposition (PEP), les médicaments sont pris après l’exposition mais avant l’apparition des symptômes. Le traitement précoce désigne un traitement immédiat ou peu après l’apparition des symptômes, tandis que le traitement tardif désigne un traitement plus tardif.

Résultats

La figure 3, la figure 4 et le tableau 1 présentent les résultats par étape de traitement, et la figure 5 montre une parcelle de forêt pour une méta-analyse des essais randomisés de toutes les études. L’analyse des résultats relatifs à la mortalité uniquement se trouve à l’annexe 2, et l’analyse excluant les études présentant des problèmes majeurs se trouve à l’annexe 3.

Traitement précoce : 100 % des études de traitement précoce font état d’un effet positif, avec une réduction estimée de 65 % de l’effet mesuré (décès, hospitalisation, etc.) par la méta-analyse des essais randomisés, RR 0.35 [0.27-0.46].

Traitement tardif : Les études sur le traitement tardif sont mitigées, 77 % d’entre elles montrant des effets positifs, et une réduction estimée à 27 % dans la méta-analyse des essais randomisés. Les études négatives se classent principalement dans les catégories suivantes : elles montrent des signes de facteurs de confusion importants non corrigés, y compris des facteurs de confusion par indication, l’utilisation est extrêmement tardive ou le dosage est excessivement élevé.

Prophylaxie pré-exposition : 79% des études de PrEP sont positives, avec une réduction estimée de 43% dans la méta-analyse des essais randomisés. Les études négatives sont toutes des études portant sur des patients atteints de maladies auto-immunes systémiques qui soit ne tiennent pas du tout compte du risque de base différent de ces patients, soit ne tiennent pas compte du risque très variable chez ces patients.

Prophylaxie post-exposition : 83% des études PEP font état d’effets positifs, avec une réduction estimée à 33% dans la méta-analyse des essais randomisés.

Figure 3. Results by treatment stage.

Figure 4. Results by treatment stage. Study results are ordered by date, with the line showing the probability that the observed frequency of positive results occurred due to random chance from an ineffective treatment.
Figure 5. Forest plot (random effects model). (ES) indicates the early treatment subset of a study (these are not included in the overall results).

Essais contrôlés randomisés (ECR)

Les ECR sont très précieux et minimisent les biais potentiels, mais ils ne sont ni nécessaires ni suffisants. [Concato] constatent que les études d’observation bien conçues ne surestiment pas systématiquement l’ampleur des effets du traitement par rapport aux ECR. [Anglemyer] a résumé les analyses comparant les ECR aux études observationnelles et a trouvé peu de preuves de différences significatives dans les estimations des effets. [Lee] montre que seulement 14% des lignes directrices de l’Infectious Diseases Society of America étaient basées sur des ECR. Les limites d’un ECR peuvent facilement l’emporter sur les avantages, par exemple des dosages excessifs, des délais de traitement trop longs ou un biais d’enquête sur Internet pourraient facilement avoir un effet plus important sur les résultats. Des questions éthiques peuvent empêcher la réalisation d’ECR pour des traitements dont l’efficacité est connue. Pour en savoir plus sur les problèmes liés aux ECR, voir [Deaton, Nichol]. Les résultats limités aux ECR sont présentés à la figure 6, 7 et au tableau 2. Même avec le petit nombre d’ECR à ce jour, il y a une forte indication d’efficacité. Si l’on exclut les traitements tardifs, 91 % des ECR à ce jour font état de résultats positifs.

Figure 6. Randomized Controlled Trials. The distribution of results for RCTs is similar to the distribution for all other studies.

Figure 7. RCTs excluding late treatment.

Discussion

Publication biaisée

La publication est souvent biaisée en faveur des résultats positifs, ce dont il faudrait tenir compte lors de l’analyse du pourcentage de résultats positifs. Les études qui nécessitent moins d’efforts sont considérées comme plus susceptibles de présenter un biais de publication. Les essais prospectifs qui impliquent un effort important sont susceptibles d’être publiés quel que soit le résultat, tandis que les études rétrospectives sont plus susceptibles de présenter un biais. Par exemple, les chercheurs peuvent effectuer une analyse préliminaire avec un minimum d’efforts et les résultats peuvent influencer leur décision de continuer. Les études rétrospectives offrent également plus de possibilités pour les spécificités de l’extraction des données et les ajustements pour influencer les résultats.

Pour la HCQ, 87,8% des études prospectives font état d’effets positifs, contre 77,9% des études rétrospectives, indiquant un biais vers la publication de résultats négatifs. La figure 8 montre un diagramme de dispersion des résultats des études prospectives et rétrospectives.

La figure 9 montre les résultats par région du monde, pour toutes les régions qui ont > à 5 études. Les études réalisées en Amérique du Nord sont 4,0 fois plus susceptibles de donner des résultats négatifs que les études du reste du monde combinées, 44,4 % contre 11,2 %, test z bilatéral -4,51, p = 0,00001. [Berry] a effectué une analyse indépendante qui a également montré un biais vers des résultats négatifs pour les recherches basées aux États-Unis.

Figure 8. Prospective vs. retrospective studies.
Figure 9. Results by region.

L’absence de parti pris en faveur des résultats positifs n’est pas très surprenante. Les résultats tant négatifs que positifs sont très importants étant donné l’utilisation actuelle de la HCQ pour la COVID-19 dans le monde entier, dont on peut trouver des preuves dans les études analysées ici, les protocoles gouvernementaux et les rapports de presse, par exemple [AFP, AfricaFeeds, Africanews, Afrik.com, Al Arabia, Al-bab, Anadolu Agency, Anadolu Agency (B), Archyde, Barron’s, Barron’s (B), BBC, Belayneh, A., CBS News, Challenge, Dr. Goldin, Efecto Cocuyo, Expats.cz, Face 2 Face Africa, France 24, France 24 (B), Franceinfo, Global Times, Government of China, Government of India, GulfInsider, Le Nouvel Afrik, LifeSiteNews, Medical World Nigeria, Medical Xpress, Medical Xpress (B), Middle East Eye, Ministerstva Zdravotnictví, Morocco World News, Mosaique Guinee, Nigeria News World, NPR News, Oneindia, Pan African Medical Journal, Parola, Pilot News, Pleno.News, Q Costa Rica, Rathi, Russian Government, Teller Report, The Africa Report, The Australian, The BL, The East African, The Guardian, The Indian Express, The Moscow Times, The North Africa Post, The Tico Times, Ukraine Ministry of Health Care, Ukrinform, Vanguard, Voice of America].

Nous constatons également une tendance à la publication de résultats négatifs par certaines revues et journaux, les scientifiques faisant état de difficultés à publier des résultats positifs [Boulware, Meneguesso]. Bien que 138 études montrent des résultats positifs, le New York Times, par exemple, n’a écrit que des articles pour des études qui affirment que la HCQ n’est pas efficace [The New York Times, The New York Times (B), The New York Times (C)]. Au 10 septembre 2020, le New York Times affirme toujours qu’il existe des preuves évidentes que la HCQ n’est pas efficace pour la COVID-19 [The New York Times (D)]. Au 9 octobre 2020, le United States National Institutes of Health recommande de ne pas utiliser la HCQ pour les patients hospitalisés et non hospitalisés [United States National Institutes of Health].

Détails du traitement

Nous nous concentrons ici sur la question de savoir si la HCQ est efficace ou non pour la COVID-19. Il existe des différences significatives en fonction du stade de traitement, le traitement précoce étant le plus efficace. 100% des études de traitement précoce font état d’un effet positif, avec une réduction estimée de 65% de l’effet mesuré (décès, hospitalisation, etc.) dans la méta-analyse des effets aléatoires, RR 0.35 [0.27-0.46]. De nombreux facteurs sont susceptibles d’influencer le degré d’efficacité, notamment le schéma posologique, les médicaments concomitants tels que le zinc ou l’azithromycine, le délai précis de traitement, la charge virale initiale des patients et l’état actuel des patients.

Conclusion

La HCQ est un traitement efficace contre la COVID-19. La probabilité qu’un traitement inefficace génère des résultats aussi positifs que les 172 études réalisées à ce jour est estimée à 1 sur 4 quadrillions (p = 0,00000000000000023).

Révisions

Ce document est basé sur des données, tous les graphiques et les chiffres sont générés de manière dynamique. Nous mettrons à jour le document au fur et à mesure de la publication de nouvelles études ou avec des corrections éventuelles. (Veuillez consulter les mises à jour ici).

21/10 : Nous avons ajouté des études [Dubee, Martinez-Lopez, Solh]. Nous avons reçu un rapport que le United States National Institutes of Health recommande de ne pas utiliser la HCQ pour les patients hospitalisés et non hospitalisés à partir du 9 octobre, et nous avons ajouté une référence.

22/10 : Nous avons ajouté [Anglemyer, Ñamendys-Silva]. Nous avons mis à jour la discussion sur [Axfors] pour la deuxième version de cette étude. Nous avons ajouté un tableau résumant les résultats de l’ECR.

23/10 : Nous avons ajouté [Komissarov, Lano] . La deuxième version de la préimpression de [Komissarov] comprend une comparaison avec le groupe de contrôle (non mentionné dans la première version). Nous avons mis à jour [Lyngbakken] pour utiliser le résultat de la mortalité dans la version récente du journal (non indiqué dans la préimpression).

Nous avons ajouté :
10/26: [Coll, Goenka, Synolaki].
10/28: [Arleo, Choi].
10/30: [Berenguer, Faíco-Filho].
10/31: [Fonseca, Frontera, Tehrani].
11/1: [Trullàs].
11/4: [Behera, Cadegiani].
11/8: [Dhibar].
11/9: [Self].
11/10: [Mathai].
11/12: [Simova, Simova (B)].
11/13: [Núñez-Gil, Águila-Gordo].
11/14: [Sheshah].
11/18: [Budhiraja].
11/19: [Falcone].
11/20: [Omrani].
11/23: [Revollo].
11/24: [Boari].
11/25: [Qin], and analysis restricted to mortality results.
11/27: [van Halem].
11/28: [Lambermont].
11/30: [Abdulrahman].
12/1: [Capsoni].
12/2: [Rodriguez-Gonzalez].
12/4: [Modrák, Ozturk, Peng].
12/7: [Maldonado].
12/8: [Barnabas].
12/9: [Agusti, Guglielmetti].
12/11: [Jung].
12/13: [Bielza].
12/14: [Rivera-Izquierdo, Rodriguez-Nava].
12/15: [Kalligeros, López].
12/16: [Alqassieh, Naseem, Orioli, Sosa-García, Tan].
12/17: [Signes-Costa].

Références

1. Abd-Elsalam et al., American Journal of Tropical Medicine and Hygiene, 10.4269/ajtmh.20-0873, Hydroxychloroquine in the Treatment of COVID-19: A Multicenter Randomized Controlled Study, https://www.ajtmh.org/content/journals/10.4269/ajtmh.20-0873.
2. Abdulrahman et al., medRxiv, doi:10.1101/2020.11.25.20234914, The efficacy and safety of hydroxychloroquine in COVID19 patients : a multicenter national retrospective cohort , https://www.medrxiv.org/content/10.1101/2020.11.25.20234914v1.
3. Abella et al., JAMA Internal Medicine, doi:doi:10.1001/jamainternmed.2020.6319, Efficacy and Safety of Hydroxychloroquine vs Placebo for Pre-exposure SARS-CoV-2 Prophylaxis Among Health Care Workers, https://jamanetwork.com/journals/j..ternalmedicine/fullarticle/2771265.
4. AFP, India backs hydroxychloroquine for virus prevention, https://www.msn.com/en-ph/news/wor..us-prevention/ar-BB14EloP?ocid=st2.
5. AfricaFeeds, Kenya approve the use of Chloroquine to treat COVID-19 patients, https://africafeeds.com/2020/04/01..oquine-to-treat-covid-19-patients/.
6. Africanews, Coronavirus patients on chloroquine heal faster – Senegalese medic, https://www.africanews.com/2020/04..uine-heal-faster-senegalese-medic/.
7. Afrik.com, Edouard Philippe emporté par le Covid, Didier Raoult, l’hydroxychloroquine et le… remdésivir, https://www.afrik.com/edouard-phil..ydroxychloroquine-et-le-remdesivir.
8. Águila-Gordo et al., Revista Española de Geriatría y Gerontología, doi:10.1016/j.regg.2020.09.006, Mortality and associated prognostic factors in elderly and very elderly hospitalized patients with respiratory disease COVID-19, https://www.sciencedirect.com/science/article/pii/S0211139X20301748.
9. Agusti et al., Enfermedades Infecciosas y Microbiología Clínica, doi:10.1016/j.eimc.2020.10.023, Efficacy and safety of hydroxychloroquine in healthcare professionals with mild SARS-CoV-2 infection: prospective, non-randomized trial, https://www.sciencedirect.com/scie../article/abs/pii/S0213005X20304134.
10. Al Arabia, Bahrain among first countries to use Hydroxychloroquine to treat coronavirus, https://english.alarabiya.net/en/N..xychloroquine-to-treat-coronavirus.
11. Al-bab, Covid-19: Algeria and Morocco continue using chloroquine despite concerns, https://al-bab.com/blog/2020/05/co..using-chloroquine-despite-concerns.
12. Alamdari et al., Tohoku J. Exp. Med., 2020, 252, 73-84, doi:10.1620/tjem.252.73, Mortality Risk Factors among Hospitalized COVID-19 Patients in a Major Referral Center in Iran, https://www.jstage.jst.go.jp/artic..em/252/1/252_73/_article/-char/ja/.
13. Alberici et al., Kidney Int., 98:1, 20-26, July 1, 2020, doi:10.1016/j.kint.2020.04.030 (preprint 5/10), A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection, https://www.kidney-international.o..cle/S0085-2538(20)30508-1/fulltext.
14. Almazrou et al., Saudi Pharmaceutical Journal, doi:10.1016/j.jsps.2020.09.019, Comparing the impact of Hydroxychloroquine based regimens and standard treatment on COVID-19 patient outcomes: A retrospective cohort study, https://www.sciencedirect.com/science/article/pii/S1319016420302334.
15. Alqassieh et al., F1000Research, Preprint, Clinical characteristics and predictors of the duration of hospital stay in COVID-19 patients in Jordan, https://f1000research.com/articles/9-1439.
16. Altman, D., BMJ, doi:10.1136/bmj.d2304, How to obtain the P value from a confidence interval, https://www.bmj.com/content/343/bmj.d2304.
17. Altman (B) et al., BMJ, doi:10.1136/bmj.d2090, How to obtain the confidence interval from a P value, https://www.bmj.com/content/343/bmj.d2090.
18. An et al., medRxiv, doi:10.1101/2020.07.04.20146548, Treatment Response to Hydroxychloroquine and Antibiotics for mild to moderate COVID-19: a retrospective cohort study from South Korea, https://www.medrxiv.org/content/10.1101/2020.07.04.20146548v1.
19. Anadolu Agency, Nigeria goes on with hydroxychloroquine clinical trial, https://www.aa.com.tr/en/africa/ni..hloroquine-clinical-trials/1854814.
20. Anadolu Agency (B), Cuba: Early hydroxychloroquine potent against COVID-19, https://www.aa.com.tr/en/americas/..ne-potent-against-covid-19/1905650.
21. Anglemyer et al., Cochrane Database of Systematic Reviews 2014, Issue 4, doi:10.1002/14651858.MR000034.pub2, Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials, https://www.cochranelibrary.com/cd..0.1002/14651858.MR000034.pub2/full.
22. Annie et al., Pharmacotherapy, doi:10.1002/phar.2467, Hydroxychloroquine in hospitalized COVID‐19 patients: Real world experience assessing mortality, https://accpjournals.onlinelibrary.wiley.com/doi/10.1002/phar.2467.
23. Aparisi et al., medRxiv, doi:10.1101/2020.10.06.20207092, Low-density lipoprotein cholesterol levels are associated with poor clinical outcomes in COVID-19, https://www.medrxiv.org/content/10.1101/2020.10.06.20207092v1.
24. Archyde, China approves chloroquine (instead of hydroxychloroquine) against covid-19, https://www.archyde.com/china-appr..droxychloroquine-against-covid-19/.
25. Arleo et al., medRxiv, doi:10.1101/2020.10.26.20219154, Clinical Course and Outcomes of coronavirus disease 2019 (COVID-19) in Rheumatic Disease Patients on Immunosuppression: A case Cohort Study at a Single Center with a Significantly Diverse Population, https://www.medrxiv.org/content/10.1101/2020.10.26.20219154v1.
26. Arshad et al., Int. J. Infect. Dis., July 1 2020, doi:10.1016/j.ijid.2020.06.099, Treatment with Hydroxychloroquine, Azithromycin, and Combination in Patients Hospitalized with COVID-19, https://www.ijidonline.com/article/S1201-9712(20)30534-8/fulltext.
27. Ashinyo et al., Pan African Medical Journal, 37:1, doi:10.11604/pamj.supp.2020.37.1.25718, Clinical characteristics, treatment regimen and duration of hospitalization among COVID-19 patients in Ghana: a retrospective cohort study, https://www.panafrican-med-journal.com/content/series/37/1/9/full/.
28. Ashraf et al., medRxiv doi:10.1101/2020.04.20.20072421.t, COVID-19 in Iran, a comprehensive investigation from exposure to treatment outcomes, https://www.researchgate.net/publi..rom_exposure_to_treatment_outcomes.
29. Axfors et al., medRxiv, doi:10.1101/2020.09.16.20194571, Mortality outcomes with hydroxychloroquine and chloroquine in COVID-19: an international collaborative meta-analysis of randomized trials, https://www.medrxiv.org/content/10.1101/2020.09.16.20194571v1.
30. Ayerbe et al., Internal and Emergency Medicine, doi:0.1007/s11739-020-02505-x, The association of treatment with hydroxychloroquine and hospital mortality in COVID-19 patients, https://link.springer.com/article/10.1007/s11739-020-02505-x.
31. Barbosa et al., Preprint, Clinical outcomes of hydroxychloroquine in hospitalized patients with COVID-19: a quasi-randomized comparative study, https://www.sefq.es/_pdfs/NEJM_Hydroxychlorquine.pdf.
32. Barnabas et al., Annals of Internal Medicine, doi:10.7326/M20-6519, Hydroxychloroquine for Post-exposure Prophylaxis to Prevent Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Trial, https://www.acpjournals.org/doi/10.7326/M20-6519.
33. Barron’s, Hydroxychloroquine: A Drug Dividing The World, https://www.barrons.com/news/hydro..rug-dividing-the-world-01591006809.
34. Barron’s (B), Amid Global Controversy, Greece Moves Forward With Chloroquine, https://www.barrons.com/news/amid-..rward-with-chloroquine-01591781707.
35. BBC, Coronavirus: How Turkey took control of Covid-19 emergency, https://www.bbc.com/news/world-europe-52831017.
36. Behera et al., medRxiv, doi:10.1101/2020.10.29.20222661v1, Role of ivermectin in the prevention of COVID-19 infection among healthcare workers in India: A matched case-control study, https://www.medrxiv.org/content/10.1101/2020.10.29.20222661v1.
37. Belayneh, A., Off-Label Use of Chloroquine and Hydroxychloroquine for COVID-19 Treatment in Africa Against WHO Recommendation, https://www.dovepress.com/off-labe..eer-reviewed-fulltext-article-RRTM.
38. Berenguer et al., Clinical Microbiology and Infection, doi:10.1016/j.cmi.2020.07.024, Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain, https://www.clinicalmicrobiologyan..cle/S1198-743X(20)30431-6/fulltext.
39. Bernaola et al., medRxiv, doi:10.1101/2020.07.17.20155960, Observational Study of the Efficiency of Treatments in Patients Hospitalized with Covid-19 in Madrid, https://www.medrxiv.org/content/10.1101/2020.07.17.20155960v1.
40. Berry et al., SSRN, Berry, doi:10.2139/ssrn.3707327., Unfavorable Hydroxychloroquine COVID-19 Research Associated with Authors Having a History of Political Party Donations, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3707327.
41. Bhattacharya et al., medRxix, doi:10.1101/2020.06.09.20116806, Pre exposure Hydroxychloroquine use is associated with reduced COVID19 risk in healthcare workers, https://www.medrxiv.org/content/10.1101/2020.06.09.20116806v1.
42. Bianet, Turkey begins distributing hydroxychloroquine to homes in capital city amid bed shortage, https://bianet.org/english/health/..-in-capital-city-amid-bed-shortage.
43. Bielza et al., Journal of the American Medical Directors Association, doi:10.1016/j.jamda.2020.12.003, Clinical characteristics, frailty and mortality of residents with COVID-19 in nursing homes of a region of Madrid, https://www.sciencedirect.com/science/article/pii/S1525861020310525.
44. Boari et al, Biosci. Rep., doi:10.1042/BSR20203455, Prognostic factors and predictors of outcome in patients with COVID-19 and related pneumonia: a retrospective cohort study, https://portlandpress.com/bioscire..cle/doi/10.1042/BSR20203455/226985.
45. Boulware, D., Comments regarding paper rejection, https://twitter.com/boulware_dr/status/1311331372884205570.
46. Boulware (B) et al., NEJM, June 3 2020, doi:10.1056/NEJMoa2016638, A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19, https://www.nejm.org/doi/full/10.1056/NEJMoa2016638.
47. Bousquet et al., Aging, 12:12, 11306-11313, doi:10.18632/aging.103583, ADL-dependency, D-Dimers, LDH and absence of anticoagulation are independently associated with one-month mortality in older inpatients with Covid-19, https://www.aging-us.com/article/103583/text.
48. Budhiraja et al., medRxiv, doi:10.1101/2020.11.16.20232223, Clinical Profile of First 1000 COVID-19 Cases Admitted at Tertiary Care Hospitals and the Correlates of their Mortality: An Indian Experience, https://www.medrxiv.org/content/10.1101/2020.11.16.20232223v1.
49. Cadegiani et al., medRxiv, doi:10.1101/2020.10.31.20223883, Early COVID-19 Therapy with Azithromycin Plus Nitazoxanide, Ivermectin or Hydroxychloroquine in Outpatient Settings Significantly Reduced Symptoms Compared to Known Outcomes in Untreated Patients, https://www.medrxiv.org/content/10.1101/2020.10.31.20223883v1.
50. Capsoni et al., Research Square, doi:10.21203/rs.3.rs-113418/v1, CPAP Treatment In COVID-19 Patients: A Retrospective Observational Study In The Emergency Department, https://www.researchsquare.com/article/rs-113418/v1.
51. Cassione et al., Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2020-217717, COVID-19 infection in a northern-Italian cohort of systemic lupus erythematosus assessed by telemedicine, https://ard.bmj.com/content/early/..05/23/annrheumdis-2020-217717.info.
52. Catteau et al., Int. J. Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106144, Low-dose Hydroxychloroquine Therapy and Mortality in Hospitalized Patients with COVID-19: A Nationwide Observational Study of 8075 Participants, https://www.sciencedirect.com/scie../article/abs/pii/S0924857920303423.
53. Cavalcanti et al., NEJM, July 23, 2020, doi:10.1056/NEJMoa2019014, Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19, https://www.nejm.org/doi/full/10.1056/NEJMoa2019014.
54. CBS News, Turkey claims success treating virus with drug touted by Trump, https://www.msn.com/en-au/news/wor..h-drug-touted-by-trump/ar-BB13oMXS.
55. Challenge, Coronavirus : ce que le Maroc a réussi, https://www.challenge.ma/coronavirus-ce-que-le-maroc-a-reussi-144484/.
56. Chatterjee et al., Indian J. Med. Res., June 20, 2020, doi:10.4103/ijmr.IJMR_2234_20, Healthcare workers & SARS-CoV-2 infection in India: A case-control investigation in the time of COVID-19, http://www.ijmr.org.in/preprintarticle.asp?id=285520.
57. Chen et al., medRxiv, doi:10.1101/2020.06.19.20136093, Efficacy and safety of chloroquine or hydroxychloroquine in moderate type of COVID-19: a prospective open-label randomized controlled study, https://www.medrxiv.org/content/10.1101/2020.06.19.20136093v1.
58. Chen (B) et al., medRxiv, doi:10.1101/2020.07.08.20148841v1, A Multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate Coronavirus disease 2019 (COVID-19), https://www.medrxiv.org/content/10.1101/2020.07.08.20148841v1.
59. Chen (C) et al., medRxiv, doi:10.1101/2020.07.08.20148841v1, A Multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate Coronavirus disease 2019 (COVID-19), .
60. Chen (D) et al., medRxiv doi:10.1101/2020.03.22.20040758, Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial, https://www.medrxiv.org/content/10.1101/2020.03.22.20040758v3.
61. Chen (E) et al., J. Zhejiang University (Med Sci), doi:10.3785/j.issn.1008-9292.2020.03.03, A pilot study of hydroxychloroquine in treatment of patients with common coronavirus disease-19 (COVID-19), http://www.zjujournals.com/med/EN/..cleFile.do?attachType=PDF&id=41137.
62. Choi et al., International Journal of Infectious Diseases, doi:10.1016/j.ijid.2020.10.062, Comparison of antiviral effect for mild-to-moderate COVID-19 cases between lopinavir/ritonavir versus hydroxychloroquine: A nationwide propensity score-matched cohort study, https://www.sciencedirect.com/science/article/pii/S1201971220322669.
63. Coll et al., American Journal of Transplantation, doi:10.1111/ajt.16369, Covid‐19 in transplant recipients: the spanish experience, https://onlinelibrary.wiley.com/doi/abs/10.1111/ajt.16369.
64. Concato et al., NEJM, 342:1887-1892, doi:10.1056/NEJM200006223422507, https://www.nejm.org/doi/full/10.1056/nejm200006223422507.
65. Cravedi et al., American Journal of Transplantation, doi:10.1111/ajt.16185, COVID‐19 and kidney transplantation: Results from the TANGO International Transplant Consortium, https://onlinelibrary.wiley.com/doi/full/10.1111/ajt.16185.
66. D’Arminio Monforte et al., Int. J. Infectious Diseases, doi:10.1016/j.ijid.2020.07.056, Effectiveness of Hydroxychloroquine in COVID-19 disease: A done and dusted situation?, https://www.ijidonline.com/article/S1201-9712(20)30600-7/fulltext.
67. Davido et al., Int. J. Antimicrobial Agents, 2020, doi:10.1016/j.ijantimicag.2020.106129, Impact of medical care including anti-infective agents use on the prognosis of COVID-19 hospitalized patients over time, https://www.sciencedirect.com/science/article/pii/S0924857920303125.
68. de la Iglesia et al., medRxiv, doi:10.1101/2020.08.31.20185314, Hydroxicloroquine for pre-exposure prophyylaxis for SARS-CoV-2, https://www.medrxiv.org/content/10.1101/2020.08.31.20185314v1.
69. Deaton et al., Social Science & Medicine, 210, doi:10.1016/j.socscimed.2017.12.005, Understanding and misunderstanding randomized controlled trials, https://www.sciencedirect.com/science/article/pii/S0277953617307359.
70. Deng, H., PyMeta, Python module for meta-analysis, http://www.pymeta.com/.
71. Derwand et al., International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106214 (preprint 7/3), COVID-19 Outpatients – Early Risk-Stratified Treatment with Zinc Plus Low Dose Hydroxychloroquine and Azithromycin: A Retrospective Case Series Study, https://www.sciencedirect.com/science/article/pii/S0924857920304258.
72. Dhibar et al., International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106224, Post Exposure Prophylaxis with Hydroxychloroquine (HCQ) for the Prevention of COVID-19, a Myth or a Reality? The PEP-CQ Study, https://www.sciencedirect.com/science/article/pii/S0924857920304350.
73. Di Castelnuovo et al., European J. Internal Medicine, doi:10.1016/j.ejim.2020.08.019, Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Italian CORIST study, https://www.sciencedirect.com/scie../article/abs/pii/S0953620520303356.
74. DISCOVERY Trial, DISCOVERY Trial Preliminary Results, https://twitter.com/raoult_didier/status/1313509242167529472.
75. Dr. Goldin, Summary of HCQ usage in India from an MD in India, https://www.facebook.com/groups/hy..oquine/permalink/2367454293560817/.
76. Dubee et al., medRxiv, doi:10.1101/2020.10.19.20214940, A placebo-controlled double blind trial of hydroxychloroquine in mild-to-moderate COVID-19, https://www.medrxiv.org/content/10.1101/2020.10.19.20214940v1.
77. Dubernet et al., J. Global Antimicrobial Resistance, doi:10.1016/j.jgar.2020.08.001, A comprehensive strategy for the early treatment of COVID-19 with azithromycin/hydroxychloroquine and/or corticosteroids: results of a retrospective observational study in the French overseas department of Reunion Island, https://www.sciencedirect.com/science/article/pii/S221371652030206X.
78. Efecto Cocuyo, Venezuela empieza a usar la cloroquina para tratar COVID-19, anuncia Jorge Rodríguez, https://efectococuyo.com/coronavir..-covid-19-anuncia-jorge-rodriguez/.
79. Esper et al., Prevent Senior Institute, São Paulo, Brazil, Empirical treatment with hydroxychloroquine and azithromycin for suspected cases of COVID-19 followed-up by telemedicine, https://www.dropbox.com/s/5qm58cd4..20journal%20manuscript%20final.pdf.
80. Expats.cz, Czech Health Ministry permits temporary use of hydroxychloroquine to treat COVID-19, https://news.expats.cz/weekly-czec..ne-in-hospitals-to-treat-covid-19/.
81. Face 2 Face Africa, Djibouti, others warned about chloroquine despite big COVID-19 recoveries, https://face2faceafrica.com/articl..ne-despite-big-covid-19-recoveries.
82. Faíco-Filho et al., Braz J Microbiol, doi:10.1007/s42770-020-00395-x (preprint 6/21), No benefit of hydroxychloroquine on SARS-CoV-2 viral load reduction in non-critical hospitalized patients with COVID-19, https://link.springer.com/article/10.1007/s42770-020-00395-x.
83. Falcone et al., Open Forum Infectious Diseases, doi:10.1093/ofid/ofaa563, Role of low-molecular weight heparin in hospitalized patients with SARS-CoV-2 pneumonia: a prospective observational study, https://academic.oup.com/ofid/adva..e/doi/10.1093/ofid/ofaa563/5992463.
84. Ferreira et al., J. Medical Virology, July 9, 2020, doi:10.1002/jmv.26286 (preprint 6/29), Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection, https://onlinelibrary.wiley.com/doi/full/10.1002/jmv.26286.
85. Ferri at al., Clinical Rheumatology, doi:0.1007/s10067-020-05334-7, COVID-19 and rheumatic autoimmune systemic diseases: report of a large Italian patients series, https://link.springer.com/article/10.1007/s10067-020-05334-7.
86. Filipova et al., Health Science Journal, Is there a Correlation between Changes in Hydroxychloroquine Use and Mortality Rates from COVID-19?, https://www.hsj.gr/medicine/is-the..nd-mortalityrates-from-covid19.pdf.
87. Fonseca et al., Travel Medicine and Infectious Disease, doi:10.1016/j.tmaid.2020.101906, Risk of Hospitalization for Covid-19 Outpatients Treated with Various Drug Regimens in Brazil: Comparative Analysis, https://www.sciencedirect.com/scie../article/abs/pii/S1477893920304026.
88. Fontana et al., Clinical Kidney Journal, 13:3, 334–339, doi:10.1093/ckj/sfaa084, SARS-CoV-2 infection in dialysis patients in northern Italy: a single-centre experience, https://academic.oup.com/ckj/article/13/3/334/5860798.
89. France 24, Covid-19: In Cameroon, chloroquine therapy hailed by French expert becomes state protocol, https://www.france24.com/en/202005..ench-expert-becomes-state-protocol.
90. France 24 (B), Covid-19 : au Cameroun, la méthode Raoult érigée en protocole d’État, https://www.france24.com/fr/202005..ig%C3%A9e-en-protocole-d-%C3%A9tat.
91. Franceinfo, Ces pays africains qui ont décidé de continuer à soigner le Covid-19 avec l’hydroxychloroquine, https://www.francetvinfo.fr/monde/..-l-hydroxychloroquine_3983239.html.
92. Fried et al., Clinical Infectious Disease, doi:10.1093/cid/ciaa1268, Patient Characteristics and Outcomes of 11,721 Patients with COVID19 Hospitalized Across the United States, https://academic.oup.com/cid/advan..e/doi/10.1093/cid/ciaa1268/5898276.
93. Frontera et al., Research Square, doi:10.21203/rs.3.rs-94509/v1, Treatment with Zinc is Associated with Reduced In-Hospital Mortality Among COVID-19 Patients: A Multi-Center Cohort Study, https://www.researchsquare.com/article/rs-94509/v1.
94. Gautret et al., Int. J. of Antimicrobial Agents, 17 March 2020, doi:10.1016/j.ijantimicag.2020.105949, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial, https://www.mediterranee-infection..roxychloroquine_final_DOI_IJAA.pdf.
95. Geleris et al., NEJM, May 7, 2020, doi:10.1056/NEJMoa2012410, Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19, https://www.nejm.org/doi/full/10.1056/NEJMoa2012410.
96. Gendebien et al., Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2020-218244, Systematic analysis of COVID-19 infection and symptoms in a systemic lupus erythematosus population: correlation with disease characteristics, hydroxychloroquine use and immunosuppressive treatments, https://ard.bmj.com/content/early/2020/06/25/annrheumdis-2020-218244.
97. Gendelman et al., Autoimmunity Reviews, 19:7, July 2020, doi:10.1016/j.autrev.2020.102566, Continuous Hydroxychloroquine or Colchicine Therapy Does Not Prevent Infection With SARS-CoV-2: Insights From a Large Healthcare Database Analysis, https://www.sciencedirect.com/science/article/pii/S1568997220301282.
98. Gentry et al., Lancet Rheumatology, doi:10.1016/S2665-9913(20)30305-2, Long-term hydroxychloroquine use in patients with rheumatic conditions and development of SARS-CoV-2 infection: a retrospective cohort study, https://www.thelancet.com/journals../PIIS2665-9913(20)30305-2/fulltext.
99. Gianfrancesco et al., Annals of the Rheumatic Diseases, 79:7, 859-866, doi:10.1136/annrheumdis-2020-217871, Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry, https://europepmc.org/article/med/32471903.
100. Global Times, Chinese medical expert decorated by Djibouti for COVID-19 prevention, https://www.globaltimes.cn/content/1189839.shtml.
101. Goenka et al., SSRN, doi:10.2139/ssrn.3689618, Seroprevalence of COVID-19 Amongst Health Care Workers in a Tertiary Care Hospital of a Metropolitan City from India, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3689618.
102. Goldman et al., NEJM, doi:10.1056/NEJMoa2015301, Remdesivir for 5 or 10 Days in Patients with Severe Covid-19, https://www.nejm.org/doi/10.1056/NEJMoa2015301.
103. Gonzalez et al., medRxiv, doi:10.1101/2020.08.18.20172874, The Prognostic Value of Eosinophil Recovery in COVID-19: A Multicentre, Retrospective Cohort Study on Patients Hospitalised in Spanish Hospitals, https://www.medrxiv.org/content/10.1101/2020.08.18.20172874v1.
104. Government of China, 关于印发新型冠状病毒肺炎诊疗方案(试行第八版)的通知, http://www.nhc.gov.cn/yzygj/s7653p..df12bd4b46e5bd28ca7f9a7f5e5a.shtml.
105. Government of India, The caregiver and all close contacts of such cases should take HCQ prophylaxis, https://www.mohfw.gov.in/pdf/RevisedHomeIsolationGuidelines.pdf.
106. Government of Venezuela, THERAPEUTIC MANAGEMENT GUIDE FOR COVID-19 PATIENTS AND CONTACTS, http://www.mpps.gob.ve/index.php/sistemas/descargas.
107. Grau-Pujol et al., Research Square, doi:10.21203/rs.3.rs-72132/v1, Pre-exposure prophylaxis with hydroxychloroquine for COVID-19: initial results of a double-blind, placebo-controlled randomized clinical trial, https://www.researchsquare.com/article/rs-72132/v1.
108. Guérin et al., Asian J. Medicine and Health, July 15, 2020, doi:10.9734/ajmah/2020/v18i730224 (preprint 5/31), Azithromycin and Hydroxychloroquine Accelerate Recovery of Outpatients with Mild/Moderate COVID-19, https://www.journalajmah.com/index.php/AJMAH/article/view/30224.
109. Guglielmetti et al., Journal of Infection and Public Health, doi:10.1016/j.jiph.2020.11.012, Severe COVID-19 pneumonia in Piacenza, Italy – a cohort study of the first pandemic wave, https://www.sciencedirect.com/science/article/pii/S1876034120307516.
110. Guisado-Vasco, Clinical characteristics and outcomes among hospitalized adults with severe COVID-19 admitted to a tertiary medical center and receiving antiviral, antimalarials, glucocorticoids, or immunomodulation with tocilizumab or cyclosporine: A retrospective observational study (COQUIMA cohort), https://www.sciencedirect.com/science/article/pii/S2589537020303357.
111. Guisado-Vasco (B), Clinical characteristics and outcomes among hospitalized adults with severe COVID-19 admitted to a tertiary medical center and receiving antiviral, antimalarials, glucocorticoids, or immunomodulation with tocilizumab or cyclosporine: A retrospective observational study (COQUIMA cohort), https://www.sciencedirect.com/science/article/pii/S2589537020303357.
112. GulfInsider, Coronavirus: Bahrain’s Therapeutic Medication Proved Effective, https://www.gulf-insider.com/coron..eutic-medication-proved-effective/.
113. Gupta et al., JAMA Intern. Med., doi:10.1001/jamainternmed.2020.3596, Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US, https://jamanetwork.com/journals/j..ternalmedicine/fullarticle/2768602.
114. Heberto et al., IJC Heart & Vasculature, doi:10.1016/j.ijcha.2020.100638, Implications of myocardial injury in Mexican hospitalized patients with coronavirus disease 2019 (COVID-19), https://www.sciencedirect.com/science/article/pii/S2352906720303365.
115. Heras et al., European Geriatric Medicine, doi:10.1007/s41999-020-00432-w (preprint 9/2), COVID-19 mortality risk factors in older people in a long-term care center, https://link.springer.com/article/10.1007/s41999-020-00432-w.
116. Hong et al., Infect. Chemother., 2020, doi:10.3947/ic.2020.52.e43, Early Hydroxychloroquine Administration for Rapid Severe Acute Respiratory Syndrome Coronavirus 2 Eradication, https://icjournal.org/DOIx.php?id=10.3947/ic.2020.52.3.396.
117. Huang et al., National Science Review, nwaa113, doi:10.1093/nsr/nwaa113, Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19, https://academic.oup.com/nsr/advan..le/doi/10.1093/nsr/nwaa113/5848167.
118. Huang (B) et al., Journal of Molecular Cell Biology, Volume 12, Issue 4, April 2020, 322–325, doi:10.1093/jmcb/mjaa014, Treating COVID-19 with Chloroquine, https://academic.oup.com/jmcb/article/12/4/322/5814655.
119. Huang (C) et al., National Science Review, nwaa113, doi:10.1093/nsr/nwaa113, Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19, https://academic.oup.com/nsr/advan..le/doi/10.1093/nsr/nwaa113/5848167.
120. Huang (D) et al., Annals of the Rheumatic Diseases 2020:79, 1163-1169, doi:10.1136/annrheumdis-2020-217425, Clinical characteristics of 17 patients with COVID-19 and systemic autoimmune diseases: a retrospective study, https://ard.bmj.com/content/79/9/1163.
121. Huh et al., medRxiv, doi:10.1101/2020.05.04.20089904, Association of previous medications with the risk of COVID-19: a nationwide claims-based study from South Korea, https://www.medrxiv.org/content/10.1101/2020.05.04.20089904v2.
122. Ip et al., medRxiv, doi:10.1101/2020.08.20.20178772, Hydroxychloroquine in the treatment of outpatients with mildly symptomatic COVID-19: A multi-center observational study, https://www.medrxiv.org/content/10.1101/2020.08.20.20178772v1.
123. Ip (B) et al., medRxiv, doi:10.1101/2020.05.21.20109207, Hydroxychloroquine and Tocilizumab Therapy in COVID-19 Patients – An Observational Study, https://www.medrxiv.org/content/10.1101/2020.05.21.20109207v1.
124. Izoulet M., SSRN, doi:10.2139/ssrn.3575899, Countries which Primarily Use Antimalarial Drugs As COVID-19 Treatment See Slower Dynamic of Daily Deaths, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3575899.
125. Jung et al., Clinical Microbiology and Infection, doi:10.1016/j.cmi.2020.12.003, Effect of hydroxychloroquine pre-exposure on infection with SARS-CoV-2 in rheumatic disease patients: A population-based cohort study, https://www.sciencedirect.com/science/article/pii/S1198743X20307527.
126. Kalligeros et al., Journal of Global Antimicrobial Resistance, doi:10.1016/j.jgar.2020.07.018, Hydroxychloroquine use in hospitalised patients with COVID-19: An observational matched cohort study, https://www.sciencedirect.com/science/article/pii/S2213716520301934.
127. Kamran et al., medRxiv, doi:10.1101/2020.07.30.20165365, Clearing the fog: Is HCQ effective in reducing COVID-19 progression: A randomized controlled trial, https://www.medrxiv.org/content/10.1101/2020.07.30.20165365v1.
128. Kelly et al., British Journal of Clinical Pharmacology, doi:10.1111/bcp.14482, Clinical outcomes and adverse events in patients hospitalised with COVID‐19, treated with off‐label hydroxychloroquine and azithromycin, https://bpspubs.onlinelibrary.wiley.com/doi/full/10.1111/bcp.14482.
129. Khurana et al., medRxiv, doi:10.1101/2020.07.21.20159301, Prevalence and clinical correlates of COVID-19 outbreak among healthcare workers in a tertiary level hospital, https://www.medrxiv.org/content/10.1101/2020.07.21.20159301v1.
130. Kim et al., medRxiv, doi:10.1101/2020.05.13.20094193, Treatment Response to Hydroxychloroquine, Lopinavir/Ritonavir, and Antibiotics for Moderate COVID 19: A First Report on the Pharmacological Outcomes from South Korea, https://www.medrxiv.org/content/10..20.05.13.20094193v1?versioned=true.
131. Kirenga et al., BMJ Open Respiratory Research, doi:10.1136/bmjresp-2020-000646, Characteristics and outcomes of admitted patients infected with SARS-CoV-2 in Uganda, https://bmjopenrespres.bmj.com/content/7/1/e000646.
132. Komissarov et al., medRxiv, doi:10.1101/2020.06.30.20143289, Hydroxychloroquine has no effect on SARS-CoV-2 load in nasopharynx of patients with mild form of COVID-19, https://www.medrxiv.org/content/10.1101/2020.06.30.20143289v1.
133. Konig et al., Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2020-217690, Baseline use of hydroxychloroquine in systemic lupus erythematosus does not preclude SARS-CoV-2 infection and severe COVID-19, https://ard.bmj.com/content/early/2020/05/20/annrheumdis-2020-217690.
134. Kuderer et al., Lancet, June 20, 2020, doi:10.1016/S0140-6736(20)31187-9 (preprint 5/28), Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study, https://www.thelancet.com/journals../PIIS0140-6736(20)31187-9/fulltext.
135. Lagier et al., Travel Med. Infect. Dis. 101791, Jun 25, 2020, doi:10.1016/j.tmaid.2020.101791, Outcomes of 3,737 COVID-19 patients treated with hydroxychloroquine/azithromycin and other regimens in Marseille, France: A retrospective analysis, https://www.sciencedirect.com/science/article/pii/S1477893920302817.
136. Lambermont et al., Critical Care Explorations, doi:10.1097/CCE.0000000000000305, Predictors of Mortality and Effect of Drug Therapies in Mechanically Ventilated Patients With Coronavirus Disease 2019: A Multicenter Cohort Study, https://journals.lww.com/ccejourna..rtality_and_Effect_of_Drug.10.aspx.
137. Lammers et al., Int. J. Infectious Diseases, doi:10.1016/j.ijid.2020.09.1460, https://www.sciencedirect.com/science/article/pii/S1201971220321755.
138. Lano et al., Clinical Kidney Journal, 13:5, October 2020, 878–888, doi:10.1093/ckj/sfaa199, Risk factors for severity of COVID-19 in chronic dialysis patients from a multicentre French cohort, https://academic.oup.com/ckj/article/13/5/878/5934808.
139. Laplana et al., PLOS ONE, doi:10.1371/journal.pone.0243598, Lack of protective effect of chloroquine derivatives on COVID-19 disease in a Spanish sample of chronically treated patients, https://journals.plos.org/plosone/..le?id=10.1371/journal.pone.0243598.
140. Lauriola et al., Clinical and Translational Science, doi:10.1111/cts.12860, Effect of combination therapy of hydroxychloroquine and azithromycin on mortality in COVID‐19 patients, https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1111/cts.12860.
141. Le Nouvel Afrik, Covid-19 : pourquoi les Marocains décèdent plus en Europe qu’au Maroc, https://www.afrik.com/covid-19-pou..ecedent-plus-en-europe-qu-au-maroc.
142. Lecronier et al., Critical Care, 24:418, 2020, doi:10.1186/s13054-020-03117-9, Comparison of hydroxychloroquine, lopinavir/ritonavir, and standard of care in critically ill patients with SARS-CoV-2 pneumonia: an opportunistic retrospective analysis, https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-03117-9.
143. Lee et al., Arch Intern Med., 2011, 171:1, 18-22, doi:10.1001/archinternmed.2010.482, Analysis of Overall Level of Evidence Behind Infectious Diseases Society of America Practice Guidelines, https://jamanetwork.com/journals/j..nternalmedicine/fullarticle/226373.
144. LifeSiteNews, Doctors insist this cheap, safe drug is “key to preventing huge loss of life” from Wuhan virus, https://www.lifesitenews.com/news/..huge-loss-of-life-from-covid-virus.
145. López et al., Annals of Pediatrics, doi:10.1016/j.anpedi.2020.10.017 , Telemedicine follow-ups for COVID-19: experience in a tertiary hospital, https://www.sciencedirect.com/science/article/pii/S1695403320304768.
146. Luo et al., Annals of Oncology, 31:10, 1386-1396, doi:10.1016/j.annonc.2020.06.007, COVID-19 in patients with lung cancer, https://www.annalsofoncology.org/a..cle/S0923-7534(20)39894-X/fulltext.
147. Ly et al., International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106219 (preprint 8/21), Pattern of SARS-CoV-2 infection among dependant elderly residents living in retirement homes in Marseille, France, March-June 2020, https://www.sciencedirect.com/scie../article/abs/pii/S0924857920304301.
148. Lyngbakken et al., Research Square, doi:10.21203/rs.3.rs-44055/v1, A pragmatic randomized controlled trial reports lack of efficacy of hydroxychloroquine on coronavirus disease 2019 viral kinetics, https://www.nature.com/articles/s41467-020-19056-6.
149. Macias et al., medRxiv, 10.1101/2020.05.16.20104141, Similar incidence of Coronavirus Disease 2019 (COVID-19) in patients with rheumatic diseases with and without hydroxychloroquine therapy, https://www.medrxiv.org/content/10.1101/2020.05.16.20104141v1.
150. Magagnoli et al., Med (2020), doi:10.1016/j.medj.2020.06.001 (preprint 4/21), Outcomes of hydroxychloroquine usage in United States veterans hospitalized with Covid-19, https://www.sciencedirect.com/science/article/pii/S2666634020300064.
151. Mahévas et al., BMJ 2020, 369, doi: https://doi.org/10.1136/bmj.m1844, Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data, https://www.bmj.com/content/369/bmj.m1844.
152. Maldonado et al., Nefrología, doi:10.1016/j.nefro.2020.09.002, COVID-19 incidence and outcomes in a home dialysis unit in Madrid (Spain) at the height of the pandemic, https://www.sciencedirect.com/science/article/pii/S0211699520301661.
153. Martinez-Lopez et al., , Multiple Myeloma and SARS-CoV-2 Infection: Clinical Characteristics and Prognostic Factors of Inpatient Mortality, https://www.medrxiv.org/content/10.1101/2020.06.29.20142455v1.
154. Mathai et al., J. Marine Medical Society, doi:10.4103/jmms.jmms_115_20, Hydroxychloroquine as pre-exposure prophylaxis against COVID-19 in health-care workers: A single-center experience, https://www.marinemedicalsociety.in/preprintarticle.asp?id=300159.
155. McGrail et al., medRxiv, doi:10.1101/2020.07.17.20156521, COVID-19 Case Series at UnityPoint Health St. Luke’s Hospital in Cedar Rapids, IA, https://www.medrxiv.org/content/10.1101/2020.07.17.20156521v1.
156. McLean et al., Open Forum Infect. Dis. September 2015, 2:3, doi:10.1093/ofid/ofv100, Impact of Late Oseltamivir Treatment on Influenza Symptoms in the Outpatient Setting: Results of a Randomized Trial, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525010/.
157. Medical World Nigeria, Chloroquine potent for COVID-19 prevention, says NAFDAC, https://medicalworldnigeria.com/po..9-Prevention-Says-NAFDAC?pid=45479.
158. Medical Xpress, Senegal says hydroxychloroquine virus treatment is promising, https://medicalxpress.com/news/202..xychloroquine-virus-treatment.html.
159. Medical Xpress (B), Amid global controversy, Greece moves forward with chloroquine, https://medicalxpress.com/news/202..ontroversy-greece-chloroquine.html.
160. Membrillo de Novales et al., Preprints 2020, 2020050057, doi:10.20944/preprints202005.0057.v1, Early Hydroxychloroquine Is Associated with an Increase of Survival in COVID-19 Patients: An Observational Study, https://www.preprints.org/manuscript/202005.0057.
161. Meneguesso, A., Médica defende tratamento precoce da Covid-19, https://www.youtube.com/watch?v=X5FCrIm_19U.
162. Middle East Eye, Coronavirus: Turkey says hydroxychloroquine dramatically reduces pneumonia cases, https://www.middleeasteye.net/news..roquine-malaria-treatment-progress.
163. Mikami et al., J. Gen. Intern. Med., doi:10.1007/s11606-020-05983-z, Risk Factors for Mortality in Patients with COVID-19 in New York City, https://link.springer.com/article/10.1007/s11606-020-05983-z.
164. Ministerstva Zdravotnictví, Rozhodnutí o dočasném povolení neregistrovaného humánního léčivého přípravku HYDROXYCHLOROQUINE SULFATE TABLETS, https://www.mzcr.cz/rozhodnuti-o-d..ydroxychloroquine-sulfate-tablets/.
165. Ministry of Health of Ukraine, ПРОТОКОЛ «НАДАННЯ МЕДИЧНОЇ ДОПОМОГИ ДЛЯ ЛІКУВАННЯ КОРОНАВІРУСНОЇ ХВОРОБИ (COVID-19)» , https://www.dec.gov.ua/wp-content/..04/2020_762_protokol_covid19-f.pdf.
166. Ministry of Health of Ukraine (B), «НАДАННЯ МЕДИЧНОЇ ДОПОМОГИ ДЛЯ ЛІКУВАННЯ КОРОНАВІРУСНОЇ ХВОРОБИ (COVID-19), https://moz.gov.ua/uploads/5/26129-dn_2106_17_09_2020_dod_1.pdf.
167. Mitchell et al., SSRN, doi:10.2139/ssrn.3586954, Markedly Lower Rates of Coronavirus Infection and Fatality in Malaria-Endemic Regions – A Clue As to Treatment?, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3586954.
168. Mitjà et al., Clinical Infectious Diseases, ciaa1009, doi:10.1093/cid/ciaa1009, Hydroxychloroquine for Early Treatment of Adults with Mild Covid-19: A Randomized-Controlled Trial, https://academic.oup.com/cid/article/doi/10.1093/cid/ciaa1009/5872589.
169. Mitjà (B) et al., NEJM, doi:10.1056/NEJMoa2021801 (preprint 7/26), A Cluster-Randomized Trial of Hydroxychloroquine as Prevention of Covid-19 Transmission and Disease, https://www.nejm.org/doi/full/10.1056/NEJMoa2021801.
170. Modrák et al., medRxiv, doi:10.1101/2020.12.03.20239863, Detailed disease progression of 213 patients hospitalized with Covid-19 in the Czech Republic: An exploratory analysis, https://www.medrxiv.org/content/10.1101/2020.12.03.20239863v1.
171. Morocco World News, Moroccan Scientist: Morocco’s Chloroquine Success Reveals European Failures, https://www.moroccoworldnews.com/2..success-reveals-european-failures/.
172. Mosaique Guinee, Traitement des malades de covid19 en Guinée: « nous continuons avec l’hydroxychloroquine » (ANSS), https://mosaiqueguinee.com/traitem..ons-avec-lhydroxychloroquine-anss/.
173. Nachega et al., The American Journal of Tropical Medicine and Hygiene, doi:10.4269/ajtmh.20-1240, Clinical Characteristics and Outcomes of Patients Hospitalized for COVID-19 in Africa: Early Insights from the Democratic Republic of the Congo, https://www.ajtmh.org/content/journals/10.4269/ajtmh.20-1240.
174. Ñamendys-Silva et al., Heart & Lung, doi:10.1016/j.hrtlng.2020.10.013, Outcomes of patients with COVID-19 in the Intensive Care Unit in Mexico: A multicenter observational study, https://www.sciencedirect.com/science/article/pii/S014795632030412X.
175. Naseem et al., medRxiv, doi:10.1101/2020.12.13.20247254, Predicting mortality in SARS-COV-2 (COVID-19) positive patients in the inpatient setting using a Novel Deep Neural Network, https://www.medrxiv.org/content/10.1101/2020.12.13.20247254v1.
176. Nichol et al., Injury, 2010, doi: 10.1016/j.injury.2010.03.033, Challenging issues in randomised controlled trials, https://www.injuryjournal.com/article/S0020-1383(10)00233-0/fulltext.
177. Nigeria News World, COVID-19: Jigawa govt reveals secret behind mass recovery of patients, https://nigerianewsworld.com/news/..-behind-mass-recovery-of-patients/.
178. NPR News, Senegal pledges a bed for every coronavirus patient, https://wfuv.org/content/senegal-p..t-%E2%80%94-and-their-contacts-too.
179. Núñez-Gil et al., Intern. Emerg. Med., doi:10.1007/s11739-020-02543-5, Mortality risk assessment in Spain and Italy, insights of the HOPE COVID-19 registry, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649104/.
180. Omrani et al., EClinicalMedicine, doi:10.1016/j.eclinm.2020.100645, Randomized double-blinded placebo-controlled trial of hydroxychloroquine with or without azithromycin for virologic cure of non-severe Covid-19, https://www.sciencedirect.com/science/article/pii/S2589537020303898.
181. Oneindia, No COVID-19 death in Manipur, Mizoram, Nagaland, Sikkim so far: Govt, https://www.oneindia.com/india/no-..o-far-health-ministry-3111048.html.
182. Orioli et al., Diabetes & Metabolic Syndrome: Clinical Research & Reviews, doi:10.1016/j.dsx.2020.12.020, Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: A retrospective study from an academic center in Belgium, https://www.sciencedirect.com/science/article/pii/S1871402120305154.
183. Ozturk et al., Nephrology Dialysis Transplantation, doi:10.1093/ndt/gfaa271, Mortality analysis of COVID-19 infection in chronic kidney disease, haemodialysis and renal transplant patients compared with patients without kidney disease: a nationwide analysis from Turkey, https://academic.oup.com/ndt/article/35/12/2083/6020341.
184. Paccoud et al., Clinical Infectious Diseases, doi:10.1093/cid/ciaa791, Compassionate use of hydroxychloroquine in clinical practice for patients with mild to severe Covid-19 in a French university hospital, https://academic.oup.com/cid/article/doi/10.1093/cid/ciaa791/5859555.
185. Pan African Medical Journal, Clinical characteristics, treatment regimen and duration of hospitalization among COVID-19 patients in Ghana: a retrospective cohort study, https://www.panafrican-med-journal.com/content/series/37/1/9/full/.
186. Parola et al., COVID-19 in Africa: What else?, https://www.mediterranee-infection..oads/2020/09/COVIDAfricaJOUMII.pdf.
187. Peng et al., Nephrology Dialysis Transplantation, doi:10.1093/ndt/gfaa288, Early versus late acute kidney injury among patients with COVID-19—a multicenter study from Wuhan, China , https://academic.oup.com/ndt/article/35/12/2095/6020340.
188. Peters et al., Clinical Microbiology and Infection, doi:10.1016/j.cmi.2020.10.004 (preprint 8/15), Outcomes of Persons With COVID-19 in Hospitals With and Without Standard Treatment With (Hydroxy)chloroquine, https://www.clinicalmicrobiologyan..cle/S1198-743X(20)30615-7/fulltext.
189. Pilot News, Chloroquine Can Treat Coronavirus at Early Stage – NAFDAC DG, https://www.westafricanpilotnews.c..onavirus-at-early-stage-nafdac-dg/.
190. Pinato et al., Cancer Discovery, doi:10.1158/2159-8290.CD-20-0773, Clinical portrait of the SARS-CoV-2 epidemic in European cancer patients, https://cancerdiscovery.aacrjourna..ly/2020/08/18/2159-8290.CD-20-0773.
191. PledgeTimes, Russian Ministry of Health has updated recommendations for the treatment of COVID-19, https://pledgetimes.com/russian-mi..ons-for-the-treatment-of-covid-19/.
192. Pleno.News, Cuba stands out in combating Covid with hydroxychloroquine, https://pleno.news/saude/coronavir..a-covid-com-hidroxicloroquina.html.
193. Polat et al., Medical Journal of Bakirkoy, 16:3, 280-6, doi:10.5222/BMJ.2020.50469, Hydroxychloroquine Use on Healthcare Workers Exposed to COVID-19 -A Pandemic Hospital Experience, https://www.bakirkoytip.org/jvi.as..oytip&plng=eng&un=BMJ-50469&look4=.
194. Q Costa Rica, Hydroxychloroquine: The Drug Costa Rica Uses Successfully To Fight Covid-19, https://qcostarica.com/hydroxychlo..es-successfully-to-fight-covid-19/.
195. Qin et al., Thrombosis Research, doi:10.1016/j.thromres.2020.11.020, Low molecular weight heparin and 28-day mortality among patients with coronavirus disease 2019: A cohort study in the early epidemic era, https://www.sciencedirect.com/science/article/pii/S0049384820306277.
196. Rajasingham et al., medRxiv, doi:10.1101/2020.09.18.20197327, Hydroxychloroquine as pre-exposure prophylaxis for COVID-19 in healthcare workers: a randomized trial, https://academic.oup.com/cid/advan..e/doi/10.1093/cid/ciaa1571/5929230.
197. Rathi et al. Lancet Infect. Dis. doi:10.1016/S1473-3099(20)30313-3, Hydroxychloroquine prophylaxis for COVID-19 contacts in India, https://www.thelancet.com/journals../PIIS1473-3099(20)30313-3/fulltext.
198. RECOVERY Collaborative Group, NEJM, doi:10.1056/NEJMoa2022926 (press release 6/5), Effect of Hydroxychloroquine in Hospitalized Patients with COVID-19: Preliminary results from a multi-centre, randomized, controlled trial, https://www.nejm.org/doi/full/10.1056/NEJMoa2022926.
199. Rentsch et al., The Lancet Rheumatology, doi:10.1016/S2665-9913(20)30378-7 (preprint 9/9, https://www.medrxiv.org/content/10.1101/2020.09.04.20187781v1), Effect of pre-exposure use of hydroxychloroquine on COVID-19 mortality: a population-based cohort study in patients with rheumatoid arthritis or systemic lupus erythematosus using the OpenSAFELY platform, https://www.sciencedirect.com/science/article/pii/S2665991320303787.
200. Revollo et al., Journal of Antimicrobial Chemotherapy, doi:10.1093/jac/dkaa477, Hydroxychloroquine pre-exposure prophylaxis for COVID-19 in healthcare workers, https://academic.oup.com/jac/advan..le/doi/10.1093/jac/dkaa477/5997449.
201. Rivera et al., Cancer Discovery, doi:10.1158/2159-8290.CD-20-0941, Utilization of COVID-19 Treatments and Clinical Outcomes among Patients with Cancer: A COVID-19 and Cancer Consortium (CCC19) Cohort Study, https://cancerdiscovery.aacrjourna..ly/2020/09/12/2159-8290.CD-20-0941.
202. Rivera-Izquierdo et al., Medicina Clínica, doi:10.1016/j.medcli.2020.06.025, Agentes terapéuticos utilizados en 238 pacientes hospitalizados por COVID-19 y su relación con la mortalidad, https://www.sciencedirect.com/science/article/pii/S0025775320304486.
203. Rodriguez-Gonzalez et al., International Journal of Antimicrobial Agents, doi:10.1016/j.ijantimicag.2020.106249, COVID-19 in hospitalized patients in Spain: a cohort study in Madrid, https://www.sciencedirect.com/science/article/pii/S0924857920304696.
204. Rodriguez-Nava et al., Mayo Clinic Proceedings: Innovations, Quality & Outcomes, Clinical characteristics and risk factors for mortality of hospitalized patients with COVID-19 in a community hospital: A retrospective cohort study, https://www.sciencedirect.com/science/article/pii/S2542454820302071.
205. Roomi et al., J. Medical Internet Research, doi:10.2196/21758, Efficacy of hydroxychloroquine and tocilizumab in patients with COVID-19: A single-center retrospective chart review, https://www.jmir.org/2020/9/e21758/.
206. Rosenberg et al., JAMA, May 11, 2020, doi:10.1001/jama.2020.8630, Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State, https://jamanetwork.com/journals/jama/fullarticle/2766117.
207. Russian Government, ВРЕМЕННЫЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПРОФИЛАКТИКА, ДИАГНОСТИКА И ЛЕЧЕНИЕ НОВОЙ КОРОНАВИРУСНОЙ ИНФЕКЦИИ (COVID-19), https://static-0.minzdrav.gov.ru/s..D0%9C%D0%A0_COVID-19_%28v.9%29.pdf.
208. Russian Government (B), Распоряжение Правительства Российской Федерации от 16.04.2020 № 1030-р, http://publication.pravo.gov.ru/Document/View/0001202004160037#print.
209. Saleemi et al., medRxiv, doi:10.1101/2020.08.05.20151027, Time to negative PCR from symptom onset in COVID-19 patients on Hydroxychloroquine and Azithromycin – A real world experience, https://www.medrxiv.org/content/10.1101/2020.08.05.20151027v1.
210. Sánchez-Álvarez et al., Nefrología, doi:10.1016/j.nefroe.2020.04.002, Status of SARS-CoV-2 infection in patients on renal replacement therapy. Report of the COVID-19 Registry of the Spanish Society of Nephrology (SEN), https://www.sciencedirect.com/science/article/pii/S201325142030050X.
211. Sbidian et al., medRxiv, doi:10.1101/2020.06.16.20132597, Hydroxychloroquine with or without azithromycin and in-hospital mortality or discharge in patients hospitalized for COVID-19 infection: a cohort study of 4,642 in-patients in France, https://www.medrxiv.org/content/10.1101/2020.06.16.20132597v1.
212. Self et al., JAMA, doi:10.1001/jama.2020.22240, Effect of Hydroxychloroquine on Clinical Status at 14 Days in Hospitalized Patients With COVID-19: A Randomized Clinical Trial, https://jamanetwork.com/journals/jama/fullarticle/2772922.
213. Serrano et al., Ann. Oncol., 2020, Sep, 31, S1026, doi:10.1016/j.annonc.2020.08.1830, COVID-19 and lung cancer: What do we know?, https://www.annalsofoncology.org/a..cle/S0923-7534(20)41826-5/fulltext.
214. Shabrawishi et al., medRxix, doi:10.1101/2020.05.08.20095679, Negative nasopharyngeal SARS-CoV-2 PCR conversion in response to different therapeutic interventions, https://www.medrxiv.org/content/10.1101/2020.05.08.20095679v1.
215. Sheshah et al., Diabetes Research and Clinical Practice, doi:10.1016/j.diabres.2020.108538, Prevalence of Diabetes, Management and Outcomes among Covid-19 Adult Patients Admitted in a Specialized Tertiary Hospital in Riyadh, Saudi Arabia, https://www.sciencedirect.com/science/article/pii/S0168822720307956.
216. Shoaibi et al., medRxiv, doi:10.1101/2020.09.23.20199463, Comparative Effectiveness of Famotidine in Hospitalized COVID-19 Patients, https://www.medrxiv.org/content/10.1101/2020.09.23.20199463v1.
217. Signes-Costa et al., Archivos de Bronconeumología, doi:10.1016/j.arbres.2020.11.012, Prevalence and 30-day mortality in hospitalized patients with COVID-19 and prior lung diseases, https://www.sciencedirect.com/science/article/pii/S0300289620305354.
218. Simova et al., New Microbes and New Infections, doi:10.1016/j.nmni.2020.100813, Hydroxychloroquine for prophylaxis and treatment of COVID-19 in health care workers, https://www.sciencedirect.com/science/article/pii/S2052297520301657.
219. Simova (B) et al., New Microbes and New Infections, doi:10.1016/j.nmni.2020.100813, Hydroxychloroquine for prophylaxis and treatment of COVID-19 in health care workers, https://www.sciencedirect.com/science/article/pii/S2052297520301657.
220. Singer et al., Annals of the Rheumatic Diseases, doi:10.1136/annrheumdis-2020-218500, Hydroxychloroquine ineffective for COVID-19 prophylaxis in lupus and rheumatoid arthritis, https://ard.bmj.com/content/early/2020/08/19/annrheumdis-2020-218500.
221. Singh et al., medRxiv, doi:10.1101/2020.05.12.20099028, Outcomes of Hydroxychloroquine Treatment Among Hospitalized COVID-19 Patients in the United States- Real-World Evidence From a Federated Electronic Medical Record Network, https://www.medrxiv.org/content/10.1101/2020.05.12.20099028v1.
222. Skipper et al., Annals of Internal Medicine, doi:10.7326/M20-4207, Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19: A Randomized Trial, https://www.acpjournals.org/doi/10.7326/M20-4207.
223. Solh et al., medRxiv, doi:10.1101/2020.10.16.20214130, Clinical course and outcome of COVID-19 acute respiratory distress syndrome: data from a national repository, https://www.medrxiv.org/content/10.1101/2020.10.16.20214130v1.
224. SOLIDARITY Trial Consortium, NEJM, doi:10.1056/NEJMoa2023184 (preprint 10/15), Repurposed antiviral drugs for COVID-19; interim WHO SOLIDARITY trial results, https://www.nejm.org/doi/full/10.1056/NEJMoa2023184.
225. Sosa-García et al., Cir Cir. 2020, 88:5, 569-575, doi:10.24875/CIRU.20000675, Experience in the management of severe COVID-19 patients in an intensive care unit, https://cirugiaycirujanos.com/frame_esp.php?id=358.
226. Soto-Becerra et al., medRxiv, doi:10.1101/2020.10.06.20208066, Real-World Effectiveness of hydroxychloroquine, azithromycin, and ivermectin among hospitalized COVID-19 patients: Results of a target trial emulation using observational data from a nationwide Healthcare System in Peru, https://www.medrxiv.org/content/10.1101/2020.10.06.20208066v1.
227. Sulaiman et al., medRxiv, doi:10.1101/2020.09.09.20184143, The Effect of Early Hydroxychloroquine-based Therapy in COVID-19 Patients in Ambulatory Care Settings: A Nationwide Prospective Cohort Study, https://www.medrxiv.org/content/10.1101/2020.09.09.20184143v1.
228. Synolaki et al., medRxiv, doi:10.1101/2020.09.05.20184655, The Activin/Follistatin-axis is severely deregulated in COVID-19 and independently associated with in-hospital mortality, https://www.medrxiv.org/content/10.1101/2020.09.05.20184655v2.
229. Tan et al., Virus Research, doi:10.1016/j.virusres.2020.198262, A retrospective comparison of drugs against COVID-19, https://www.sciencedirect.com/scie../article/abs/pii/S0168170220311692.
230. Tang et al., BMJ 2020, 369, doi:10.1136/bmj.m1849, Hydroxychloroquine in patients with COVID-19: an open-label, randomized, controlled trial, https://www.bmj.com/content/369/bmj.m1849.
231. Tehrani et al., International Journal of Infectious Diseases, doi:10.1016/j.ijid.2020.10.071, Risk factors for mortality in adult COVID-19 patients; frailty predicts fatal outcome in older patients, https://www.sciencedirect.com/science/article/pii/S1201971220322761.
232. Teller Report, Coronavirus: a study in Senegal confirms the effectiveness of hydroxychloroquine, http://www.tellerreport.com/news/2..hydroxychloroquine.BJeet4Kst8.html.
233. The Africa Report, Coronavirus: Didier Raoult the African and chloroquine, from Dakar to Brazzaville, https://www.theafricareport.com/26..roquine-from-dakar-to-brazzaville/.
234. The Australian, India and Indonesia stand by antimalarials, https://www.theaustralian.com.au/w..y/d7856d1371697fe69e4fcc39d7f1f97c.
235. The BL, Russia supports the use of hydroxychloroquine, the drug to treat the CCP Virus suggested by Trump, https://thebl.com/world-news/russi..oroquine-drug-ccp-virus-trump.html.
236. The East African, Algeria backs use of malaria drug despite WHO dropping trials, https://www.theeastafrican.co.ke/n../4552902-5564930-duphp6/index.html.
237. The Guardian, Chloroquine potent for COVID-19 prevention, says NAFDAC, https://guardian.ng/news/nigeria/n..r-covid-19-prevention-says-nafdac/.
238. The Indian Express, Vadodara administration drive: HCQ helping in containing Covid-19 cases, say docs as analysis begins, https://indianexpress.com/article/..y-docs-as-analysis-begins-6486049/.
239. The Moscow Times, Russia Approves Unproven Malaria Drug to Treat Coronavirus, https://www.themoscowtimes.com/202..a-drug-to-treat-coronavirus-a70025.
240. The New York Times, Malaria Drug Taken by Trump Is Tied to Increased Risk of Heart Problems and Death in New Study, https://www.nytimes.com/2020/05/22..alaria-drug-trump-coronavirus.html.
241. The New York Times (B), Small Chloroquine Study Halted Over Risk of Fatal Heart Complications, https://www.nytimes.com/2020/04/12..ronavirus-trump.html?smid=em-share.
242. The New York Times (C), Malaria Drug Promoted by Trump Did Not Prevent Covid Infections, Study Finds, https://www.nytimes.com/2020/06/03..chloroquine-coronavirus-trump.html.
243. The New York Times (D), Coronavirus Can Be Deadly for Young Adults, Too, Study Finds, https://www.nytimes.com/2020/09/10/world/covid-19-coronavirus.html.
244. The North Africa Post, Morocco continues use of Chloroquine despite controversy, https://northafricapost.com/41247-..loroquine-despite-controversy.html.
245. The Tico Times, News briefs: Reopening plans on-track, hydroxychloroquine use to continue, partnership with Coursera, https://ticotimes.net/2020/06/15/n..continue-partnership-with-coursera.
246. Treanor et al., JAMA, 2000, 283:8, 1016-1024, doi:10.1001/jama.283.8.1016, Efficacy and Safety of the Oral Neuraminidase Inhibitor Oseltamivir in Treating Acute Influenza: A Randomized Controlled Trial, https://jamanetwork.com/journals/jama/fullarticle/192425.
247. Trullàs et al., Research Square, doi:10.21203/rs.3.rs-39421/v1 , High in-hospital mortality due to COVID-19 in a community hospital in Spain: a prospective observational study, https://www.researchsquare.com/article/rs-39421/v1.
248. Ukrinform, Ukraine receives batch of hydroxychloroquine tablets from India, https://www.ukrinform.net/rubric-e..ose-down-in-ukraine-on-june-3.html.
249. Ulrich et al., Open Forum Infectious Diseases, doi:10.1093/ofid/ofaa446, Treating Covid-19 With Hydroxychloroquine (TEACH): A Multicenter, Double-Blind, Randomized Controlled Trial in Hospitalized Patients, https://academic.oup.com/ofid/adva..e/doi/10.1093/ofid/ofaa446/5910201.
250. United States National Institutes of Health, Chloroquine or Hydroxychloroquine With or Without Azithromycin, https://www.covid19treatmentguidel..uine-with-or-without-azithromycin/.
251. van Halem et al., BMC Infect Dis., doi:10.1186/s12879-020-05605-3, Risk factors for mortality in hospitalized patients with COVID-19 at the start of the pandemic in Belgium: a retrospective cohort study, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691970/.
252. Vanguard, COVID-19: Nigerian study finds Chloroquine, Hydroxychloroquine effective as Prophylaxis, https://www.vanguardngr.com/2020/0..oroquine-effective-as-prophylaxis/.
253. Voice of America, Cameroon Begins Large-scale Chloroquine Production, https://www.voanews.com/science-he..large-scale-chloroquine-production.
254. Wang et al., medRxiv, doi:10.1101/2020.06.11.20128926, Comorbidity and Sociodemographic determinants in COVID-19 Mortality in an US Urban Healthcare System, https://www.medrxiv.org/content/10.1101/2020.06.11.20128926v1.
255. Xia et al., ChiCTR2000029741, Efficacy of Chloroquine and Lopinavir/ Ritonavir in mild/general novel coronavirus (CoVID-19) infections: a prospective, open-label, multicenter randomized controlled clinical study, http://www.chictr.org.cn/showproj.aspx?proj=49263.
256. Yu et al., Science China Life Sciences, 2020 May 15, 1-7, doi:10.1007/s11427-020-1732-2, Low Dose of Hydroxychloroquine Reduces Fatality of Critically Ill Patients With COVID-19, https://pubmed.ncbi.nlm.nih.gov/32418114/.
257. Zhang et al., JAMA, 80:19, 1690, doi:10.1001/jama.280.19.1690, What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes, https://jamanetwork.com/journals/jama/fullarticle/188182.
258. Zhong Nanshan (钟南山), Efficacy and safety of chloroquine for treatment of COVID-19. An open-label, multi-center, non-randomized trial, https://twitter.com/JamesTodaroMD/status/1243260720944480265.
259. Zhong (B) et al., Lancent Rheumatology, 10.1016/S2665-9913(20)30227-7, COVID-19 in patients with rheumatic disease in Hubei province, China: a multicentre retrospective observational study, https://www.thelancet.com/journals../PIIS2665-9913(20)30227-7/fulltext.

Annexe 1. Méthodes et résultats de l’étude

Nous avons effectué des recherches continues sur PubMed, medRxiv, ClinicalTrials.gov, The Cochrane Library, Google Scholar, Collabovid, les listes de référence d’autres études et méta-analyses, et des soumissions sur le site c19study.com, qui reçoit régulièrement des soumissions d’études positives et négatives à la publication. Les termes de recherche étaient hydroxychloroquine ou chloroquine et COVID-19 ou SARS-CoV-2, ou simplement hydroxychloroquine ou chloroquine. Toutes les études concernant l’utilisation de la HCQ ou de la CQ pour la COVID-19 qui font état d’un effet par rapport à un groupe de contrôle sont incluses dans l’analyse principale. Il s’agit d’une analyse vivante qui sera mise à jour régulièrement.

Nous avons extrait les valeurs de l’effet et les données associées de toutes les études. Si les études font état de plusieurs types d’effets, le résultat le plus grave est utilisé dans les calculs pour cette étude. Par exemple, si les effets sur la mortalité et les cas sont tous deux signalés, l’effet sur la mortalité est utilisé, il peut être différent de l’effet sur lequel l’étude s’est concentrée. Si les résultats de la mortalité sont donnés à plusieurs reprises, nous avons utilisé la date la plus récente. La mortalité seule est préférée aux résultats combinés. Les résultats avec des événements nuls dans les deux bras n’ont pas été utilisés. Le résultat clinique est considéré comme plus important que l’état du test PCR. Lorsque les résultats fournissent un ratio de chances, nous avons calculé le risque relatif lorsque cela était possible, ou nous l’avons converti en un risque relatif selon [Zhang] Les intervalles de confiance et les valeurs p ont été utilisés lorsqu’ils étaient disponibles, en utilisant des valeurs ajustées lorsqu’elles étaient fournies. Si nécessaire, la conversion entre les valeurs p et les intervalles de confiance a été effectuée [Altman, Altman (B)], et le test exact de Fisher a été utilisé pour calculer les valeurs p des données sur les événements. Si une étude séparait HCQ et HCQ+AZ, nous avons utilisé les résultats combinés qui étaient possibles, ou les résultats pour le groupe plus large. Les résultats sont tous exprimés avec un RR < 1,0 suggérant l’efficacité. La plupart des résultats représentent le risque relatif de quelque chose de négatif. Quelques études font état de temps relatifs, où les résultats sont exprimés comme le rapport entre le temps pour le groupe HCQ et le temps pour le groupe de contrôle. Une étude rapporte le taux de réduction de la charge virale, où le résultat est basé sur le pourcentage de changement du taux. Les calculs ont été effectués en Python (3.9.0) avec scipy (1.5.4), pythonmeta (1.11), numpy (1.19.4), statsmodels (0.12.1), et plotly (4.14.1). La parcelle de forêt est calculée en utilisant PythonMeta [Deng] avec le modèle à effets aléatoires DerSimonian et Laird (l’hypothèse d’effet fixe n’est pas plausible dans ce cas). Nous n’avons reçu aucun financement, cette recherche est effectuée pendant notre temps libre. Nous n’avons aucune affiliation avec des sociétés pharmaceutiques ou des partis politiques.

Pour un traitement précoce, nous avons utilisé un délai de 5 jours après les symptômes, bien qu’une période plus courte puisse être préférable. Les antiviraux ne sont généralement considérés comme efficaces que lorsqu’ils sont utilisés dans un délai plus court, par exemple 0-36 ou 0-48 heures pour l’oseltamivir, les délais plus longs n’étant pas efficaces [McLean, Treanor].

Vous trouverez ci-dessous un résumé des résultats de l’étude. Il est facile de proposer d’exclure certains articles pour diverses raisons, par exemple [Fried, Kelly, Kuderer, McGrail] font état de résultats négatifs mais ne considèrent pas eux-mêmes les résultats comme comparables – ils notent que les patients traités étaient significativement plus malades et ne font pas de corrections. Pour éviter tout biais potentiel dans l’évaluation, nous incluons actuellement toutes les études. La recherche HCQ présente un biais négatif comme indiqué ci-dessus et le fait de remédier à ce biais augmentera l’efficacité observée. Étant donné l’état des discussions scientifiques sur la HCQ, nous pensons qu’une approche conservatrice est appropriée, d’autant plus que l’efficacité est claire même avec cette approche. À titre de référence, un projet d’analyse excluant les études présentant des problèmes majeurs est présenté à l’annexe 3.

Traitement précoce
Un seul résultat par étude est inclus dans les calculs, conformément aux détails ci-dessus.
[Agusti], risk of disease progression, RR 0.32, p = 0.21, pneumonia.
[Agusti], risk of no virological cure, RR 0.68,.
[Ashraf], risk of death, RR 0.32, p = 0.15.
[Cadegiani], risk of death, RR 0.19, p = 0.21, control group 1.
[Cadegiani], risk of ventilation, RR 0.05, p < 0.001, control group 1.
[Cadegiani], risk of hospitalization, RR 0.02, p < 0.001, control group 1.
[Chen], median time to PCR-, RR 0.28, p = 0.01.
[Derwand], risk of death, RR 0.21, p = 0.12.
[Derwand], risk of hospitalization, RR 0.18, p < 0.001.
[Esper], risk of hospitalization, RR 0.36, p = 0.02.
[Fonseca], HCQ vs. nothing, RR 0.36, p < 0.001.
[Fonseca], HCQ vs. anything else, RR 0.49, p = 0.006.
[Gautret], risk of no virological cure at day 6, RR 0.34, p = 0.001.
[Guisado-Vasco], risk of death, RR 0.12, p = 0.001.
[Guérin], risk of death, RR 0.39, p = 1.00.
[Guérin], risk of no recovery, RR 0.35, p < 0.001.
[Heras], risk of death, RR 0.04, p = 0.004.
[Hong], risk of prolonged viral shedding, RR 0.35, p = 0.001.
[Huang], risk of no virological cure, RR 0.41, p < 0.001.
[Huang (B)], risk of no recovery at day 14, RR 0.08, p = 0.02.
[Huang (B)], risk of no improvement in pneumonia at day 14, RR 0.17, p = 0.22.
[Ip], risk of hospitalization, RR 0.54, p = 0.03.
[Izoulet], risk of death, RR 0.15, p < 0.001.
[Kirenga], median time to recovery, RR 0.74, p = 0.20.
[Lagier], risk of death, RR 0.41, p = 0.05.
[Ly], risk of death, RR 0.44, p = 0.02.
[Mitjà], risk of hospitalization, RR 0.75, p = 0.64.
[Mitjà], risk of no recovery, RR 0.83, p = 0.38.
[Omrani], HCQ+AZ or HCQ vs. control risk of hospitalization, RR 0.88, p = 1.00.
[Omrani], HCQ+AZ or HCQ vs. control risk of symptomatic at day 21, RR 0.74, p = 0.58.
[Omrani], HCQ+AZ or HCQ vs. control risk of Ct<=40 at day 14, RR 1.10, p = 0.13.
[Simova], risk of hospitalization, RR 0.06, p = 0.01.
[Simova], risk of viral+ at day 14, RR 0.04, p = 0.001.
[Skipper], risk of hospitalization, RR 0.48, p = 0.19.
[Skipper], risk of no recovery at day 14, RR 0.80, p = 0.21.
[Sulaiman], risk of death, RR 0.36, p = 0.01.
[Sulaiman], risk of hospitalization, RR 0.61, p = 0.001.

Traitement tardif
Un seul résultat par étude est inclus dans les calculs, conformément aux détails ci-dessus.
[Abd-Elsalam], risk of death, RR 1.20, p = 1.00.
[Abd-Elsalam], risk of no recovery at day 28, RR 0.70, p = 0.009.
[Abdulrahman], risk of death, RR 0.83, p = 1.00, PSM.
[Abdulrahman], risk of combined intubation/death, RR 1.75, p = 0.24, PSM.
[Alamdari], risk of death, RR 0.45, p = 0.03.
[Alberici], risk of death, RR 0.57, p = 0.12.
[Almazrou], risk of ventilation, RR 0.35, p = 0.16.
[Almazrou], risk of ICU admission, RR 0.79, p = 0.78.
[Alqassieh], risk of hospitalization, RR 0.82, p = 0.11.
[An], time to viral clearance, RR 0.97, p = 0.92.
[Annie], risk of death, RR 0.96, p = 0.83.
[Annie], risk of death, RR 1.21, p = 0.46.
[Aparisi], risk of death, RR 0.37, p = 0.008.
[Arshad], risk of death, RR 0.49, p = 0.009.
[Ashinyo], risk of hospitalization, RR 0.67, p = 0.03.
[Ayerbe], risk of death, RR 0.48, p < 0.001.
[Barbosa], risk of death, RR 2.47, p = 0.58.
[Berenguer], risk of death, RR 0.38, p < 0.001.
[Bernaola], risk of death, RR 0.83, p < 0.001.
[Bielza], risk of death, RR 0.78, p = 0.09.
[Boari], risk of death, RR 0.45, p < 0.001.
[Bousquet], risk of death, RR 0.57, p = 0.15.
[Budhiraja], risk of death, RR 0.35, p < 0.001.
[Capsoni], risk of ventilation, RR 0.60, p = 0.30.
[Catteau], risk of death, RR 0.68, p < 0.001.
[Cavalcanti], HCQ+HCQ/AZ risk of death, RR 0.84, p = 0.77.
[Cavalcanti], HCQ+HCQ/AZ risk of hospitalization, RR 1.28, p = 0.30.
[Chen (B)], risk of no virological cure, RR 0.76, p = 0.71.
[Chen (B)], median time to PCR-, RR 0.50, p = 0.40.
[Chen (C)], risk of no virological cure, RR 1.29, p = 0.70.
[Chen (D)], risk of no improvement in pneumonia at day 6, RR 0.43, p = 0.04.
[Chen (E)], risk of radiological progression, RR 0.71, p = 0.57.
[Chen (E)], risk of viral+ at day 7, RR 2.00, p = 1.00.
[Choi], median time to PCR-, RR 1.22, p < 0.001.
[Coll], risk of death, RR 0.54, p < 0.001.
[Cravedi], risk of death, RR 1.53, p = 0.17.
[D’Arminio Monforte], risk of death, RR 0.66, p = 0.12.
[Davido], risk of combined intubation/hospitalization, RR 0.45, p = 0.04.
[Di Castelnuovo], risk of death, RR 0.70, p < 0.001.
[DISCOVERY], 29 day mortality estimated from graph, RR 0.69, p = 0.35.
[DISCOVERY], risk of 7-point scale status, RR 0.83, p = 0.40.
[Dubee], mortality at day 28, RR 0.54, p = 0.21.
[Dubee], combined mortality/intubation at day 28, RR 0.74, p = 0.82.
[Dubee], HCQ+AZ from day 0 subgroup combined mortality/intubation, RR 0.15, p = 0.21.
[Dubernet], risk of ICU admission, RR 0.12, p = 0.008.
[Falcone], risk of death, RR 0.35, p = 0.20, PSM.
[Falcone], risk of death, RR 0.75, p = 0.36, multivariate Cox regression.
[Falcone], risk of death, RR 0.43, p < 0.001, univariate Cox regression.
[Faíco-Filho], Δt7-12 ΔCt improvement, RR 0.19, p = 0.40.
[Faíco-Filho], Δt<7 ΔCt improvement, RR 0.76, p = 0.36. [Faíco-Filho], Δt>12 ΔCt improvement, RR 1.15, p = 0.52.
[Fontana], risk of death, RR 0.50, p = 0.53.
[Fried], risk of death, RR 1.27, p < 0.001.
[Frontera], PSM, RR 0.63, p = 0.01.
[Frontera], regression, RR 0.76, p = 0.02.
[Geleris], risk of combined intubation/death, RR 1.04, p = 0.76.
[Goldman], risk of death, RR 0.78, p = 0.46.
[Gonzalez], risk of death, RR 0.73, p = 0.06.
[Guglielmetti], risk of death, RR 0.65, p = 0.22, multivariable Cox.
[Guisado-Vasco (B)], risk of death, RR 0.80, p = 0.36.
[Gupta], risk of death, RR 1.06, p = 0.41.
[Heberto], risk of death, RR 0.46, p = 0.04.
[Heberto], risk of ventilation, RR 0.34, p = 0.008.
[Huang (C)], risk of no virological cure, RR 0.33, p < 0.001.
[Ip (B)], risk of death, RR 0.99, p = 0.93.
[Kalligeros], risk of death, RR 1.67, p = 0.57.
[Kamran], risk of disease progression, RR 0.95, p = 1.00.
[Kamran], with comorbidities, RR 0.45, p = 0.30.
[Kamran], risk of viral+ at day 14, RR 1.10, p = 0.52.
[Kelly], risk of death, RR 2.43, p = 0.03.
[Kim], risk of hospitalization, RR 0.49, p = 0.01.
[Kim], risk of no virological cure, RR 0.44, p = 0.005.
[Komissarov], risk of viral load, RR 1.25, p = 0.45.
[Kuderer], risk of death, RR 2.34, p < 0.001, HCQ+AZ.
[Lambermont], risk of death, RR 0.68, p = 0.46.
[Lammers], risk of combined death/ICU, RR 0.68, p = 0.02.
[Lano], risk of death, RR 0.67, p = 0.28.
[Lano], risk of combined death/ICU, RR 0.61, p = 0.23.
[Lano], not requiring O2 on diagnosis, RR 0.31, p = 0.11.
[Lauriola], risk of death, RR 0.27, p < 0.001.
[Lecronier], risk of death, RR 0.58, p = 0.24, HCQ vs. control.
[Lecronier], risk of treatment escalation, RR 0.94, p = 0.73, HCQ vs. control.
[Lecronier], risk of viral+ at day 7, RR 0.85, p = 0.61, HCQ vs. control.
[Luo], risk of death, RR 1.02, p = 0.99.
[Lyngbakken], risk of death, RR 0.96, p = 1.00.
[Lyngbakken], improvement in viral load reduction rate, RR 0.29, p = 0.51.
[López], risk of disease progression, RR 0.36, p = 0.02.
[Magagnoli], HCQ+AZ w/dispositions, RR 0.89, p = 0.74.
[Magagnoli], HCQ w/dispositions, RR 0.99, p = 0.98.
[Magagnoli], risk of death, RR 1.31, p = 0.28, HCQ+AZ.
[Magagnoli], risk of death, RR 1.83, p = 0.009, HCQ.
[Mahévas], risk of death, RR 1.20, p = 0.75.
[Maldonado], risk of death, RR 0.09, p = 0.17.
[Martinez-Lopez], risk of death, RR 0.67, p = 0.20.
[McGrail], risk of death, RR 1.70, p = 0.69.
[Membrillo de Novales], risk of death, RR 0.45, p = 0.002.
[Mikami], risk of death, RR 0.53, p < 0.001.
[Modrák], risk of death, RR 0.41, p = 0.04, Cox (single).
[Nachega], risk of death, RR 0.72, p = 0.17.
[Nachega], risk of no improvement, RR 0.74, p = 0.13.
[Naseem], risk of death, RR 0.67, p = 0.34, multivariate Cox.
[Núñez-Gil], risk of death, RR 0.92, p = 0.005.
[Orioli], risk of death, RR 0.87, p = 1.00.
[Ozturk], risk of death, RR 0.56, p = 0.14, CQ/HCQ.
[Paccoud], risk of death, RR 0.89, p = 0.88.
[Peng], risk of disease progression, RR 0.89, p = 0.63, CQ/HCQ risk of AKI.
[Peters], risk of death, RR 1.09, p = 0.57.
[Pinato], risk of death, RR 0.41, p < 0.001.
[Qin], risk of death, RR 0.66, p = 0.61.
[RECOVERY], risk of death, RR 1.09, p = 0.15.
[Rivera], risk of death, RR 1.02, p = 0.90.
[Rivera-Izquierdo], risk of death, RR 0.81, p = 0.75.
[Rodriguez-Gonzalez], risk of death, RR 0.77, p = 0.26.
[Rodriguez-Nava], risk of death, RR 1.06, p = 0.77, unadjusted.
[Roomi], risk of death, RR 1.38, p = 0.54.
[Rosenberg], risk of death, RR 1.35, p = 0.31.
[Saleemi], median time to PCR-, RR 1.21, p < 0.05.
[Sbidian], risk of death, RR 1.05, p = 0.74, whole population HCQ AIPTW adjusted.
[Sbidian], risk of no hospital discharge, RR 0.80, p = 0.002, whole population HCQ AIPTW adjusted.
[Self], risk of death, RR 0.93, p = 0.84.
[Serrano], risk of death, RR 0.57, p = 0.14.
[Shabrawishi], risk of no virological cure at day 5, RR 0.85, p = 0.66.
[Sheshah], risk of death, RR 0.20, p < 0.001.
[Shoaibi], risk of death, RR 0.85, p < 0.001.
[Signes-Costa], risk of death, RR 0.53, p < 0.001.
[Singh], risk of death, RR 0.95, p = 0.72.
[Singh], risk of ventilation, RR 0.81, p = 0.26.
[Solh], risk of death, RR 1.18, p = 0.17.
[SOLIDARITY], risk of death, RR 1.19, p = 0.23.
[Sosa-García], risk of death, RR 1.11, p = 1.00.
[Soto-Becerra], risk of death, RR 0.82, p < 0.001, day 54 (last day available) weighted KM.
[Soto-Becerra], risk of death, RR 1.84, p = 0.02, day 30.
[Synolaki], risk of death, RR 0.76, p = 0.27.
[Sánchez-Álvarez], risk of death, RR 0.54, p = 0.005.
[Tan], risk of hospitalization, RR 0.65, p = 0.04.
[Tang], risk of no virological cure at day 21, RR 0.79, p = 0.51.
[Tehrani], risk of death, RR 0.87, p = 0.63.
[Trullàs], risk of death, RR 0.64, p = 0.12.
[Ulrich], risk of death, RR 1.06, p = 1.00.
[van Halem], risk of death, RR 0.68, p = 0.05.
[Wang], risk of death, RR 0.94, p = 0.63.
[Xia], risk of no virological cure, RR 0.62, p = 0.17.
[Yu], risk of death, RR 0.40, p = 0.002.
[Zhong], risk of no virological cure at day 10, RR 0.20, p < 0.001.
[Águila-Gordo], risk of death, RR 0.33, p = 0.10.
[Ñamendys-Silva], HCQ+AZ vs. neither HCQ or CQ, RR 0.68, p = 0.18.
[Ñamendys-Silva], CQ vs. neither HCQ or CQ, RR 0.63, p = 0.09.
[Ñamendys-Silva], HCQ+AZ or CQ, RR 0.66, p = 0.006.

Prophylaxie pré-exposition
Un seul résultat par étude est inclus dans les calculs, conformément aux détails ci-dessus.
[Abella], risk of COVID-19 case, RR 0.95, p = 1.00.
[Arleo], all patients, RR 0.50, p = 0.67.
[Arleo], inpatients, RR 0.48, p = 0.64.
[Behera], risk of COVID-19 case, RR 0.72, p = 0.29.
[Bhattacharya], risk of COVID-19 case, RR 0.19, p = 0.001.
[Cassione], risk of COVID-19 case, RR 1.50, p = 0.59.
[Chatterjee], full course vs. unused risk of COVID-19 case, RR 0.33, p < 0.001.
[de la Iglesia], risk of hospitalization, RR 1.50, p = 1.00.
[de la Iglesia], suspected COVID-19, RR 1.43, p = 0.15.
[de la Iglesia], confirmed COVID-19, RR 0.92, p = 0.84.
[Ferreira], risk of COVID-19 case, RR 0.53, p < 0.001.
[Ferri], risk of COVID-19 case, RR 0.37, p = 0.01.
[Gendebien], risk of COVID-19 case, RR 0.96, p = 0.93.
[Gendelman], risk of COVID-19 case, RR 0.92, p = 0.88.
[Gentry], risk of death, RR 0.13, p = 0.10.
[Gentry], risk of COVID-19 case, RR 0.79, p = 0.27.
[Gianfrancesco], risk of hospitalization, RR 0.97, p = 0.82.
[Goenka], risk of IgG positive, RR 0.13, p = 0.03.
[Grau-Pujol], risk of COVID-19 case, RR 0.32, p = 0.47.
[Huang (D)], risk of hospitalization, RR 0.20, p < 0.001.
[Huh], risk of COVID-19 case, RR 1.48, p = 0.09.
[Jung], risk of death, RR 0.41, p = 1.00.
[Jung], risk of COVID-19 case, RR 1.13, p = 0.86.
[Khurana], risk of COVID-19 case, RR 0.49, p = 0.02.
[Konig], risk of hospitalization, RR 0.97, p = 0.88.
[Laplana], risk of COVID-19 case, RR 1.56, p = 0.24.
[Macias], risk of hospitalization, RR 0.74, p = 1.00.
[Macias], risk of COVID-19 case, RR 1.49, p = 0.53.
[Mathai], risk of COVID-19 case, RR 0.10, p < 0.001.
[Mathai], risk of COVID-19 case, RR 0.12, p < 0.001, symptomatic.
[Mitchell], risk of death, RR 0.01, p < 0.001.
[Rajasingham], risk of hospitalization, RR 0.50, p = 1.00.
[Rajasingham], risk of COVID-19 case, RR 0.73, p = 0.12.
[Rentsch], risk of death, RR 1.03, p = 0.83.
[Revollo], PSM risk of PCR+, RR 0.77, p = 0.52.
[Revollo], PSM risk of IgG+, RR 1.43, p = 0.42.
[Singer], risk of COVID-19 case, RR 1.09, p = 0.62.
[Zhong (B)], risk of COVID-19 case, RR 0.09, p = 0.04.

Prophylaxie post-exposition
Un seul résultat par étude est inclus dans les calculs, conformément aux détails ci-dessus.
[Barnabas], risk of hospitalization, RR 1.04, p = 1.00.
[Barnabas], day 14 symptomatic mITT PCR+ AIM, RR 1.27, p = 0.33.
[Barnabas], day 14 symptomatic mITT PCR+ IDWeek, RR 1.23, p = 0.41.
[Barnabas], day 14 PCR+ mITT AIM, RR 1.10, p = 0.66.
[Barnabas], day 14 PCR+ mITT IDWeek, RR 0.99, p = 0.97.
[Barnabas], day 14 PCR+ ITT AIM, RR 0.81, p = 0.23.
[Boulware (B)], risk of COVID-19 case, RR 0.83, p = 0.35.
[Boulware (B)], probable COVID-19 case, RR 0.75, p = 0.22.
[Dhibar], risk of COVID-19 case, RR 0.59, p = 0.03.
[Dhibar], risk of COVID-19 case, RR 0.50, p = 0.04, PCR+.
[Dhibar], risk of symptomatic case, RR 0.56, p = 0.21.
[Mitjà (B)], risk of death, RR 0.68, p = 0.58.
[Mitjà (B)], baseline pcr- risk of cases, RR 0.68, p = 0.27.
[Polat], risk of COVID-19 case, RR 0.43, p = 0.03.
[Simova (B)], risk of COVID-19 case, RR 0.07, p = 0.01.

Annexe 2. Analyse des résultats de la mortalité

La figure 10 montre une parcelle de forêt limitée aux seuls résultats de mortalité.

Figure 10. Forest plot (random effects model) for mortality results only. (ES) indicates the early treatment subset of a study (these are not included in the overall results).

Annexe 3. Analyse avec exclusions

De nombreuses méta-analyses ont été rédigées pour la HCQ, dont la plupart sont devenues quelque peu obsolètes en raison du flux continu d’études plus récentes. Parmi les analyses récentes dont les conclusions sont positives, on peut citer [IHU Marseille], qui considère les biais significatifs résultant de la compréhension de chaque essai, et [Garcia-Albeniz, Ladapo, Prodromos], qui se concentrent sur les études d’utilisation précoce ou prophylactique.

Les méta-analyses faisant état de conclusions négatives se concentrent sur les études de traitement tardives, ont tendance à ne pas tenir compte du retard de traitement, ont tendance à suivre des évaluations basées sur des formules qui négligent les principaux problèmes des différentes études, et finissent par avoir une pondération disproportionnée par rapport à une analyse raisonnée de la contribution de chaque étude. Par exemple, [Axfors] attribue 87% de valeur à un seul essai, l’essai RECOVERY [RECOVERY], produisant ainsi le même résultat. Cependant, l’essai RECOVERY est peut-être l’étude la plus biaisée de toutes celles qu’ils ont incluses, en raison du dosage excessif utilisé, proche du niveau montré comme très dangereux dans [Borba] (OR 2.8), et avec des patients en phase terminale extrêmement malades (60% nécessitant de l’oxygène, 17% une ventilation/ECMO, et un taux de mortalité très élevé dans les deux bras). Il y a peu de raisons de penser que les résultats de cet essai sont applicables à des dosages plus typiques ou à un traitement plus précoce (10/22 : la deuxième version de cette étude publiée 10/22 attribue 74% à RECOVERY et 15% à SOLIDARITY [SOLIDARITY] , qui est le seul autre essai utilisant un dosage excessif similaire).

Nous incluons toutes les études dans l’analyse principale, mais plusieurs d’entre elles présentent des problèmes majeurs qui pourraient modifier sensiblement les résultats. Nous présentons ici un projet d’analyse excluant les études présentant des problèmes importants, notamment l’indication de différences significatives entre groupes non ajustées ou la confusion par indication, l’utilisation à un stade extrêmement avancé >14 jours après les symptômes ou >50% sur l’oxygène au départ, la fourniture de très peu de détails, les dosages excessifs qui se sont révélés dangereux, les problèmes importants avec des ajustements qui pourraient raisonnablement faire des différences substantielles, et le recours à la PCR qui peut être inexacte et moins indicative de la gravité que les symptômes. Nous vous invitons à nous faire part de vos commentaires sur les améliorations ou les corrections à apporter à ce sujet. Les études exclues sont les suivantes, et la parcelle de forêt qui en résulte est illustrée à la figure 11.

[Alamdari], substantial unadjusted confounding by indication.
[An], results only for PCR status which may be significantly different to symptoms.
[Annie], confounding by indication is likely and adjustments do not consider COVID-19 severity.
[Barbosa], excessive unadjusted differences between groups.
[Budhiraja], excessive unadjusted differences between groups.
[Cassione], not fully adjusting for the different baseline risk of systemic autoimmune patients.
[Chen], results only for PCR status which may be significantly different to symptoms.
[Chen (B)], results only for PCR status which may be significantly different to symptoms.
[Chen (C)], results only for PCR status which may be significantly different to symptoms.
[Choi], excessive unadjusted differences between groups.
[Cravedi], substantial unadjusted confounding by indication.
[de la Iglesia], not fully adjusting for the different baseline risk of systemic autoimmune patients.
[Fried], excessive unadjusted differences between groups, substantial unadjusted confounding by indication.
[Gautret], excessive unadjusted differences between groups, results only for PCR status which may be significantly different to symptoms.
[Geleris], significant issues found with adjustments.
[Gendebien], not fully adjusting for the baseline risk differences within systemic autoimmune patients.
[Gendelman], not fully adjusting for the different baseline risk of systemic autoimmune patients.
[Gianfrancesco], not fully adjusting for the baseline risk differences within systemic autoimmune patients.
[Gupta], >50% on oxygen/ventilation at baseline.
[Hong], results only for PCR status which may be significantly different to symptoms.
[Huang (D)], significant unadjusted confounding possible.
[Huang], results only for PCR status which may be significantly different to symptoms.
[Huang (C)], results only for PCR status which may be significantly different to symptoms.
[Huh], not fully adjusting for the different baseline risk of systemic autoimmune patients.
[Izoulet], excessive unadjusted differences between groups.
[Kamran], excessive unadjusted differences between groups.
[Kelly], substantial unadjusted confounding by indication.
[Konig], not fully adjusting for the baseline risk differences within systemic autoimmune patients.
[Kuderer], substantial unadjusted confounding by indication.
[Laplana], not fully adjusting for the different baseline risk of systemic autoimmune patients.
[Lecronier], >50% on oxygen/ventilation at baseline.
[Luo], substantial unadjusted confounding by indication.
[Lyngbakken], results only for PCR status which may be significantly different to symptoms.
[Macias], not fully adjusting for the baseline risk differences within systemic autoimmune patients.
[McGrail], excessive unadjusted differences between groups.
[Mitchell], excessive unadjusted differences between groups.
[Peters], excessive unadjusted differences between groups.
[RECOVERY], excessive dosage, results do not apply to typical dosages.
[Rentsch], not fully adjusting for the baseline risk differences within systemic autoimmune patients, medication adherence unknown and may significantly change results.
[Rodriguez-Nava], substantial unadjusted confounding by indication, excessive unadjusted differences between groups.
[Roomi], substantial unadjusted confounding by indication.
[Saleemi], results only for PCR status which may be significantly different to symptoms, substantial unadjusted confounding by indication.
[Sbidian], significant issues found with adjustments.
[Shabrawishi], results only for PCR status which may be significantly different to symptoms.
[Singer], not fully adjusting for the baseline risk differences within systemic autoimmune patients.
[Singh], confounding by indication is likely and adjustments do not consider COVID-19 severity.
[Solh], >50% on oxygen/ventilation at baseline, substantial unadjusted confounding by indication.
[SOLIDARITY], excessive dosage, results do not apply to typical dosages, >50% on oxygen/ventilation at baseline.
[Sosa-García], >50% on oxygen/ventilation at baseline, substantial unadjusted confounding by indication.
[Soto-Becerra], substantial unadjusted confounding by indication, includes PCR+ patients that may be asymptomatic for COVID-19 but in hospital for other reasons.
[Tang], results only for PCR status which may be significantly different to symptoms.
[Tehrani], substantial unadjusted confounding by indication.
[Ulrich], >50% on oxygen/ventilation at baseline.
[Wang], confounding by indication is likely and adjustments do not consider COVID-19 severity.
[Xia], detail too minimal.
[Zhong], results only for PCR status which may be significantly different to symptoms.

Figure 11. Forest plot (random effects model) excluding studies with significant issues. (ES) indicates the early treatment subset of a study (these are not included in the overall results).

Article traduit via HCQ

Le grand retour du #Rivotril Art53 du Décret du 16 octobre 2020

Décret n° 2020-1262 du 16 octobre 2020 prescrivant les mesures générales nécessaires pour faire face à l’épidémie de covid-19 dans le cadre de l’état d’urgence sanitaire

Les soins palliatifs sont des soins qui ne visent qu’au confort du malade, souvent en phase de fin de vie. L’objectif des soins palliatifs est de prévenir et de soulager les douleurs physiques, les symptômes inconfortables ou encore la souffrance psychologique. Le Rivotril aggrave la détresse respiratoire, mais sera utilisé comme soins palliatif. Finalement, la commission d’enquête Covid-19 n’a servi à rien. La crise a révélé à quel point nos ainés sont négligés en France. Le tri des patients sera encore la solution.

Avec 20000 ou 30000 lits supplémentaires :
– L’hôpital pouvait accueillir nos aînés qu’on a laissé mourir dans les EHPAD
– Ne pas faire le tri des patients
– Ne pas reporter les opérations des patients atteints d’autres pathologies

Commission d’enquête Covid-19 et le « protocole palliatif covid » = Rivotril et GIR (groupes d’intervention rapide)

Compte rendu Mission d’information de la conférence des Présidents sur l’impact, la gestion et les conséquences dans toutes ses dimensions de l’épidémie de Coronavirus-Covid 19 ⇒ PDF

Commission d’enquête Covid-19 : protocole Rivotril et GIR

⇒A noter que “ce médicament ne doit jamais être utilisé dans les situations suivantes : – insuffisance respiratoire sévère”

Avril 2020 : #Euthanasie #RIVOTRIL le Dr.Nicole Delépine explique le décret du 28 mars 2020

Coronavirus : Eric Ciotti juge qu’on a « laissé mourir les vieux » du Covid-19, 20minutes

Dr Joëlle de Monredon : « Avec le Rivotril associé à de la morphine, c’est le décès assuré par totale dépression respiratoire ». Le Rivotril a été « invité » dans le protocole de « soins » liés au coronavirusBoulevard Voltaire

Dr Serge Rader – “On achève nos personnes âgées dans les ehpad par sédation Rivotril”

Apple et Google lancent une app pour traquer le coronavirus

L’application vous avertira si vous avez côtoyé quelqu’un qui a été testé positif.

Apple et Google s’associent officiellement pour développer une application de suivi du coronavirus conçue pour vous dire si vous avez récemment été exposé à une personne dont le test COVID-19 s’est révélé positif.

L’idée est de tirer parti de la vaste portée commerciale des deux méga-entreprises pour suivre la propagation du coronavirus. L’application est centrée sur l’idée de “traçage de contacts”, qui consiste essentiellement à garder un œil sur qui est porteur du virus et à qui le virus aurait pu être transmis.

La technologie Bluetooth permet aux appareils de mesurer la proximité d’autres appareils. Comme le coronavirus peut être transmis en étant proche de ceux qui en sont atteints, les applications utilisant cette technologie pourraient indiquer si une personne a été en contact étroit avec quelqu’un qui s’est précédemment auto-enregistré comme ayant été testé positif au COVID-19.

Selon le communiqué de presse, les deux entreprises prévoient de lancer des interfaces de programmation d’applications (API) en mai qui permettront à l’application de fonctionner sur les plateformes et appareils mobiles Apple iOS et Google Android.

Les applications des autorités de santé publique utiliseront le logiciel pour commencer à collecter des données – et potentiellement informer les utilisateurs s’ils sont en danger.

Selon un communiqué, une véritable plateforme de recherche de contacts basée sur le Bluetooth sera mise en service dans les prochains mois.

Afin de préserver l’anonymat de ceux qui utilisent l’application, Google et Apple affirment que les informations envoyées seront traitées de manière à protéger la vie privée.

“La liste des personnes avec lesquelles vous avez été en contact ne quitte jamais votre téléphone”, selon la documentation officielle. L’application nécessitera également un “consentement explicite de l’utilisateur”.

The Verge

Nicole Delépine -“Il faut arrêter de dire que la chloroquine c’est dangereux !”

Dr Nicole Delépine, pédiatre, oncologue et ancien chef de service en cancérologie pédiatrique à l’Assistance publique-Hôpitaux de Paris est l’invitée d’André Bercoff sud Sud Radio.

On interdit la #chloroquine pour traiter le #COVID19 par peur des effets secondaires mais on autorise le #Rivotril pour euthanasier nos vieux par un décret du 28 mars 2020 publié au Journal officiel du 29 mars 2020 … Nous sommes bien en France, dans le “meilleur système de santé du monde”…

Dr Serge Rader – “On achève nos personnes âgées dans les Ehpad par sédation Rivotril”

Ancien pharmacien, Serge Rader est auteur de plusieurs études sur les médicaments est l’invité d’André Bercoff sur Sud Radio.

#COVID19 : Un médecin américain aurait traité avec succès plus de 500 patients avec l’hydroxychloroquine

Covid-19 : Quels sont les médicaments les plus efficaces ?

Les résultats des premiers essais officiels sur les médicaments pour traiter le Covid-19 sont disponibles

Alors que la nouvelle maladie respiratoire s’est largement répandue à partir de janvier, les médecins – d’abord en Chine, puis aux États-Unis, en Italie et en France – ont tous entrepris de tester des médicaments facilement disponibles, utilisés à d’autres fins et assez fiables. Aujourd’hui, trois mois seulement après le début de la pandémie, les premiers résultats médicaux d’essais organisés – des études structurées pour mesurer si un médicament est réellement efficace – sont rendus publics. Nous en comptons trois à ce jour, tous impliquant des médicaments aux propriétés antivirales.

Favipiravir

C’est un antiviral fabriqué par Toyama Chemical (qui fait partie de Fuji Film) qui a prouvé son efficacité contre de nombreux types de virus à ARN (comme le virus Covid-19). Connu sous le nom commercial Avigan au Japon, il empêche les virus de copier leur matériel génétique. Il a été découvert à l’origine lors de la recherche de médicaments pour traiter la grippe.

Le rapportFavipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial

Lopinavir et ritonavir

C’est une thérapie combinée impliquant deux médicaments différents. La paire a déjà été utilisée pour traiter et prévenir les infections au VIH, sous la marque Kaletra. Le médicament clé est le lopinavir, un inhibiteur de protéase, dont les effets contre le coronavirus du syndrome respiratoire du Moyen-Orient ont été démontrés en laboratoire et sur des animaux. Le ritonavir agit pour augmenter la disponibilité du premier médicament dans l’organisme.

Le rapport : A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19

Chloroquine ou hydroxychloroquine

C’est un médicament antipaludique utilisé depuis la Seconde Guerre mondiale. Pendant des décennies, les scientifiques ont exploré ses propriétés antivirales, et la pandémie de coronavirus a ravivé l’intérêt pour ce médicament.

Les patients qui se retrouvent en soins intensifs supplient d’obtenir le traitement, et la demande de médicaments va littéralement exploser. Non seulement le nombre de cas confirmés va encore augmenter, mais ils seront deux fois plus nombreux, voire plus, à ressentir l’apparition de symptômes typiques comme la toux, la fièvre et l’essoufflement.

Jusqu’à présent, il n’existe pas de médicaments approuvés pour le Covid-19, de sorte que le principal traitement des cas graves n’est pas du tout médicamenteux : il s’agit de l’oxygénothérapie, des ventilateurs qui aident les gens à respirer et des soins de soutien. Certains patients reçoivent des antibiotiques classiques.

Dans l’ensemble, de nombreuses études sur les médicaments sont en cours, vérifiant les bienfaits de tout, de la vitamine C à la médecine traditionnelle chinoise. Selon une liste d’essais établie par le cabinet de conseil CellTrials.org, les médecins ont enregistré plus de 250 études sur le Covid-19, principalement en Chine, et cherchent à rassembler 26 000 patients. Il faudra peut-être attendre encore un mois avant que d’autres études importantes et de grande envergure, comme celles portant sur l’antiviral expérimental remdesivir, réalisées par la société américaine Gilead, soient prêtes à faire état de leurs conclusions.

Le rapport : Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial

Poursuivez votre lecture sur MIT Technology Review pour en savoir plus sur les études publiées jusqu’à présent et sur les promesses qu’elles contiennent.

Pour suivre l’épidémie en temps réel, une carte interactive conçue par l’Université Johns Hopkins : https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

Pour en savoir plus :

Base de données de recherche ouverte COVID-19 (CORD-19) : https://pages.semanticscholar.org/coronavirus-research

Selon le China Daily : Voici quelques médicaments et thérapies qui se sont avérés efficaces pour traiter les patients.
– Favipiravir
– Phosphate de chloroquine
– Thérapie par transfusion de plasma
– Remdesivir
– Médecine traditionnelle chinoise

Pour en savoir plus : http://covid-19.chinadaily.com.cn

Le médicament augmenté

L’usage du médicament dans les discours transhumanistes et ses significations sociales

Si les NBIC et leur convergence sont au cœur des revendications transhumanistes en faveur d’un humain augmenté, le médicament y occupe également une place centrale. Il constitue dans les nombreux écrits et discours du mouvement l’un des premiers moyens systématiquement considérés pour repousser les limites biologiques humaines et améliorer les performances physiques, intellectuelles aussi bien qu’émotionnelles des individus. L’objectif de cet article est d’explorer d’un point de vue sociologique la place et le sens que revêt le médicament dans les discours transhumanistes. Revendiqué comme l’outil d’une véritable émancipation humaine, l’usage non thérapeutique du médicament porté par les transhumanistes fait en réalité fond sur une biomédicalisation accrue de nombre de problématiques sociales contemporaines. Après avoir exploré cette ambivalence, l’article montre ensuite que l’aspiration transhumaniste à faire « mieux que bien » grâce à la pharmacologie, loin d’être propre au mouvement, se rapproche en réalité plus largement des prétentions de la biomédecine contemporaine, au regard desquelles le transhumanisme ne constitue finalement que l’une des manifestations exacerbées.

Télécharger le PDF : Nicolas LE DÉVÉDEC – Academia.edu

La pensée n’est pas dans le cerveau !

Dans l’expression « intelligence artificielle », le mot « intelligence » n’est qu’une métaphore. Car, si sa capacité calculatoire dépasse celle de l’homme, l’intelligence artificielle est incapable de donner une signification à ses propres calculs. Pour le philosophe et psychanalyste argentin Miguel Benasayag, réduire toute la complexité du vivant à un code informatique est illusoire, tout comme l’idée qu’une machine peut se substituer à l’homme est absurde.

Miguel Benasayag répond aux questions de Régis Meyran

Qu’est-ce qui distingue l’intelligence humaine de l’artificielle ?

L’intelligence vivante n’est pas une machine à calculer. C’est un processus qui articule l’affectivité, la corporéité, l’erreur. Elle suppose la présence du désir et d’une conscience chez l’être humain de sa propre histoire sur le long terme. L’intelligence humaine n’est pas pensable en dehors de tous les autres processus cérébraux et corporels.

Contrairement à l’homme, ou à l’animal, qui pense à l’aide d’un cerveau situé dans un corps, lui-même inscrit dans un environnement, la machine produit des calculs et des prédictions sans être capable de leur donner une signification. La question de savoir si une machine peut se substituer à l’homme, est en réalité absurde. C’est le vivant qui crée du sens, pas le calcul. Nombre de chercheurs en IA sont convaincus que la différence entre intelligence vivante et intelligence artificielle est quantitative, alors qu’elle est qualitative.

Deux ordinateurs du programme Google Brain seraient parvenus à communiquer entre eux dans une « langue » qu’ils auraient eux-mêmes créée et qui serait indéchiffrable pour l’homme… Qu’en pensez-vous ?

Cela n’a tout simplement aucun sens. En réalité, à chaque fois qu’on lance ces deux machines, elles répètent systématiquement la même séquence d’échange d’informations. Et cela n’a rien d’une langue, cela ne communique pas. C’est une mauvaise métaphore, comme celle consistant à dire que la serrure « reconnaît » la clé.

Dans le même ordre d’idées, certaines personnes disent qu’elles sont « amies » avec un robot. Il existe même des applications pour smartphone qui sont supposées vous permettre de « dialoguer » avec un robot. Voyez le film Her, de Spike Jonze (2013) : après une série de questions posées à un homme, qui permettent de cartographier son cerveau, une machine fabrique une voix et des réponses qui déclenchent un sentiment amoureux chez cet homme.

Mais peut-on avoir une relation amoureuse avec un robot ? Non, car l’amour et l’amitié ne se réduisent pas à un ensemble de transmissions neuronales dans le cerveau.

L’amour et l’amitié existent au-delà de l’individu, au-delà même de l’interaction entre deux personnes. Quand je parle, je participe à quelque chose que nous avons en commun, la langue. Il en va de même pour l’amour, l’amitié et la pensée : ce sont des processus symboliques auxquels les humains participent. Personne ne pense en soi. Un cerveau donne son énergie pour participer à la pensée.

À ceux qui croient que la machine peut penser, nous devons répondre : ce serait étonnant qu’une machine pense, puisque même le cerveau ne pense pas !

Selon vous, le fait de réduire le vivant à un code constitue le défaut principal de l’intelligence artificielle.

En effet, certains spécialistes de l’intelligence artificielle sont tellement éblouis par leurs prouesses techniques, un peu comme des petits garçons fascinés par leur jeu de construction, qu’ils perdent la vue d’ensemble. Ils tombent dans le piège du réductionnisme.

Le mathématicien américain et père de la cybernétique Norbert Wiener écrivait en 1950, dans The Human Use of Human Beings (Cybernétique et société), qu’on pourra un jour « télégraphier un homme ». Quatre décennies plus tard, l’idée transhumaniste du mind uploading est élaborée sur le même fantasme, selon lequel le monde réel tout entier peut être réduit à des unités d’information transmissibles d’un hardware à un autre.

L’idée que le vivant peut être modélisé en unités d’information se retrouve aussi chez le biologiste français Pierre-Henri Gouyon, par exemple, avec qui j’ai publié un livre d’entretiens, Fabriquer le vivant ? (2012). Il voit dans l’acide désoxyribonucléique (ADN) le support d’un code qu’on peut déplacer sur d’autres supports. Mais quand on estime que le vivant peut être modélisé en unités d’information, on oublie que la somme d’unités d’information n’est pas la chose vivante, et on ne s’inquiète pas de faire des recherches sur le non-modélisable.

La prise en compte du non-modélisable ne renvoie pas à l’idée de Dieu, ni à l’obscurantisme, quoi qu’en pensent certains. Les principes d’imprédictibilité et d’incertitude sont présents dans toutes les sciences exactes. C’est pourquoi l’aspiration à la connaissance totale des transhumanistes s’inscrit dans un discours technolâtre, parfaitement irrationnel. Si elle connaît un grand succès, c’est qu’elle est capable d’étancher la soif de métaphysique de nos contemporains. Les transhumanistes rêvent d’une vie dans laquelle ils auraient chassé toute incertitude. Or, dans le quotidien, comme dans la recherche, il faut bien se coltiner les incertitudes, l’aléatoire…

L’immortalité humaine pourrait être acquise grâce à l’intelligence artificielle

Selon la théorie transhumaniste, nous serons un jour capables d’atteindre l’immortalité grâce à l’intelligence artificielle.

Dans le bouleversement postmoderne actuel, où la relation entre les choses n’est plus pensée, où le réductionnisme et l’individualisme dominent, la promesse transhumaniste prend la place de la caverne de Platon.

Pour le philosophe grec, la vraie vie n’était pas dans le monde physique, elle était dans les idées. Pour les transhumanistes, vingt-quatre siècles plus tard, la vraie vie n’est pas dans le corps, elle est dans les algorithmes. Le corps n’est pour eux qu’un simulacre : il faut en extraire un ensemble d’informations utiles, et se débarrasser de ses défauts naturels. C’est ainsi qu’ils entendent atteindre l’immortalité.

J’ai eu l’occasion, lors de colloques scientifiques, de rencontrer plusieurs membres de l’Université de la Singularité [à orientation transhumaniste] qui portaient un médaillon autour du cou, pour signifier qu’en cas de décès, leur tête sera cryogénisée.

J’y vois l’émergence d’une nouvelle forme de conservatisme, alors même que c’est moi qui passe pour un bioconservateur, car je m’oppose à la philosophie transhumaniste. Mais lorsque mes adversaires me traitent de réactionnaire, ils utilisent le même type d’arguments que les hommes politiques qui prétendent moderniser ou réformer, pendant qu’ils détruisent les droits sociaux d’un pays et qu’ils taxent de conservateurs ceux qui veulent conserver leurs droits !

L’hybridation entre l’homme et la machine est déjà une réalité. C’est aussi un idéal transhumaniste.

Tout reste à faire pour comprendre le vivant et l’hybridation, car le monde de la technique biologique ignore aujourd’hui encore presque tout de la vie, qui ne se réduit pas aux seuls processus physicochimiques modélisables. Cela dit, le vivant est déjà hybridé avec la machine et il le sera certainement encore davantage avec les produits issus des nouvelles technologies.

Il existe de nombreuses machines, avec lesquelles nous travaillons et auxquelles nous déléguons un certain nombre de fonctions. Sont-elles toutes nécessaires ? C’est toute la question. J’ai travaillé sur l’implant cochléaire et la culture sourde : il existe des millions de sourds qui revendiquent leur propre culture – qui n’est pas assez respectée – et refusent l’implant cochléaire car ils préfèrent s’exprimer dans la langue des signes. Cette innovation, qui pourrait écraser la culture des sourds, constitue-t-elle un progrès ? La réponse ne va pas de soi.

Avant tout, nous devons veiller à ce que l’hybridation se fasse dans le respect de la vie. Or, ce à quoi nous assistons aujourd’hui n’est pas tant l’hybridation que la colonisation du vivant par la machine. À force d’externaliser, de nombreuses personnes ne se rappellent plus de rien. Elles ont des problèmes de mémoire qui ne résultent pas de pathologies dégénératives.

Prenez le cas du GPS : on a observé des chauffeurs de taxi à Paris et à Londres, deux villes labyrinthiques. Alors que les Londoniens conduisaient en s’orientant eux-mêmes, les Parisiens utilisaient systématiquement leur GPS. Au bout de trois ans, des tests psychologiques ont montré que les noyaux sous-corticaux qui s’occupent de cartographier le temps et l’espace étaient atrophiés chez ces derniers (des atrophies certainement réversibles si la personne abandonne cette pratique). Ils étaient affectés d’une sorte de dyslexie qui les empêchait de se repérer dans le temps et dans l’espace. C’est cela la colonisation : la zone est atrophiée car la fonction est déléguée sans être remplacée par quoi que ce soit.

https://iatranshumanisme.com/transhumanisme/les-technologies-emergentes/le-rapport-nbic/

Qu’est-ce qui vous inquiète le plus?

Je suis inquiet du succès démesuré de la logique d’innovation. La notion de progrès a fait long feu. Elle a été remplacée par l’idée d’innovation, qui est bien différente : elle ne contient ni point de départ, ni point d’arrivée, elle n’est ni bonne, ni mauvaise. Il faut donc la questionner de façon critique. Le traitement de texte sur ordinateurs est bien plus performant que la machine à écrire Olivetti que j’utilisais dans les années 1970 : pour moi, c’est un progrès. Mais, à l’inverse, tout smartphone contient plusieurs dizaines d’applications, et peu de gens se posent la question de combien parmi elles leurs sont vraiment nécessaires. La sagesse consiste à rester à distance de la fascination que provoquent le divertissement et l’efficacité des nouvelles technologies.

Par ailleurs, dans une société déboussolée, qui a perdu ses grands récits, le discours transhumaniste est très inquiétant : il infantilise les humains, et ne prend aucune distance avec la promesse technologique. En Occident, la technique a toujours renvoyé à l’idée de dépassement des limites. Déjà au XVII e siècle, le philosophe français René Descartes, pour qui le corps était une machine, avait imaginé la possibilité d’une pensée hors du corps. C’est une tentation humaine que de rêver que, par la science, on va se libérer de notre corps et de ses limites – ce que le transhumanisme pense enfin pouvoir réaliser.

Mais le rêve d’un homme post-organique tout-puissant et hors-limite a des conséquences en tous genres sur la société. Il me semble qu’il devrait même être analysé dans un rapport spéculaire avec la montée des fondamentalismes religieux, qui se recroquevillent sur les supposées valeurs naturelles de l’humain. Je les vois comme deux intégrismes irrationnels en guerre.

Philosophe et psychanalyste argentin. Miguel Benasayag est un ancien résistant guévariste au péronisme, il réussit à fuir l’Argentine en 1978 après y avoir été emprisonné et torturé, et réside désormais à Paris, en France. Il a publié récemment Cerveau augmenté, homme diminué (2016) et La singularité du vivant (2017).

Le Courrier de l’UNESCO • juillet-septembre

Un médicament inverse de manière significative la perte de mémoire

Un médicament mis au point pour le diabète pourrait être utilisé pour traiter la maladie d’Alzheimer après que les scientifiques ont découvert qu’il avait «significativement inversé la perte de mémoire» chez les souris grâce à une triple méthode d’action.

La recherche, publiée dans Brain Research, pourrait apporter des améliorations substantielles dans le traitement de la maladie d’Alzheimer grâce à l’utilisation d’un médicament créé à l’origine pour traiter le diabète de type 2.

Le chercheur principal, le professeur Christian Holscher, de l’université de Lancaster, au Royaume-Uni, a déclaré que le traitement innovant “est clairement prometteur pour devenir un nouveau traitement pour les maladies neurodégénératives chroniques telles que la maladie d’Alzheimer”.

Roger Lenglet : Nanotoxiques et Menace sur nos neurones

La maladie d’Alzheimer est la cause la plus fréquente de démence et les chiffres devraient atteindre deux millions de personnes au Royaume-Uni d’ici à 2051 selon la Société Alzheimer, qui a financé partiellement la recherche.

Dr Doug Brown, directeur de la recherche et du développement à la Société Alzheimer, a déclaré : ” Sans nouveaux traitements en près de 15 ans, nous devons trouver de nouvelles façons de lutter contre la maladie d’Alzheimer. Il est impératif que nous explorions si les médicaments développés pour traiter d’autres conditions peuvent bénéficier aux personnes atteintes de la maladie d’Alzheimer et d’autres formes de démence. Cette approche de la recherche pourrait rendre beaucoup plus rapide l’obtention de nouveaux médicaments prometteurs pour les personnes qui en ont besoin. “

Bien que les bénéfices de ces médicaments «triple agonistes» n’aient jusqu’ici été trouvés que chez la souris, d’autres études sur des médicaments existants comme le liraglutide ont montré de réelles promesses pour les personnes atteintes de la maladie d’Alzheimer.

C’est la première fois qu’un médicament triple récepteur a été utilisé, il agit de multiples façons pour protéger le cerveau de la dégénérescence. Il combine le GLP-1, GIP et le Glucagon qui sont tous des facteurs de croissance. Il a été démontré que les troubles de la signalisation des facteurs de croissance sont altérés dans le cerveau des patients atteints de la maladie d’Alzheimer.

L’étude a utilisé des souris APP / PS1, qui sont des souris transgéniques qui expriment des gènes mutés humains responsables de la maladie d’Alzheimer. Ces gènes ont été trouvés chez les personnes qui ont une forme d’Alzheimer qui peut être héréditaire. Des souris transgéniques âgées en stades avancés de neurodégénérescence ont été traitées.

Dans un test de labyrinthe, l’apprentissage et la formation de la mémoire ont été grandement améliorés par le médicament qui :
– a également augmenté les niveaux d’un facteur de croissance du cerveau qui protège le fonctionnement des cellules nerveuses
– réduit la quantité de plaques amyloïdes dans le cerveau liée à la maladie d’Alzheimer
– réduit à la fois l’inflammation chronique et le stress oxydatif
– ralenti le taux de perte de cellules nerveuses

Un médicament pour empêcher le développement des maladies neurodégénératives du cerveau

Le professeur Holscher a déclaré : «Ces résultats très prometteurs démontrent l’efficacité de ces nouveaux médicaments à récepteurs multiples qui ont été initialement développés pour traiter le diabète de type 2, mais qui ont montré des effets neuroprotecteurs cohérents dans plusieurs études.

“Les études cliniques avec une version plus ancienne de ce type de médicament ont déjà montré des résultats très prometteurs chez les personnes atteintes de la maladie d’Alzheimer ou avec des troubles de l’humeur”.

“Nous montrons ici qu’un nouveau médicament triple récepteur est prometteur comme traitement potentiel de la maladie d’Alzheimer, mais d’autres tests de dose-réponse et des comparaisons directes avec d’autres médicaments doivent être effectués afin d’évaluer si ces nouveaux médicaments sont supérieurs aux précédents.”

Le diabète de type 2 est un facteur de risque pour la maladie d’Alzheimer et a été impliqué dans la progression de la maladie. L’insuline altérée a été liée à des processus dégénératifs cérébraux dans le diabète de type 2 et la maladie d’Alzheimer. La désensibilisation à l’insuline a également été observée dans le cerveau de la maladie d’Alzheimer. La désensibilisation pourrait jouer un rôle dans le développement de troubles neurodégénératifs car l’insuline est un facteur de croissance aux propriétés neuroprotectrices.

Lancaster University ; https://doi.org/10.1016/j.brainres.2017.10.012

Le premier médicament «avalé-connecté» bientôt sur le marché

Mi-novembre 2017. Gel sur la France et réveil avec George Orwell. De ce côté-ci de l’Atlantique l’information vient d’être donnée par la BBC « FDA approves ‘trackable’ pill » et par Les Echos : « Les Etats-Unis autorisent le premier médicament connecté ». « Les médicaments seront bientôt plus intelligents que les malades » croient savoir Les Echos. Avec toutes les conséquences que l’on peut, désormais, redouter. The New York Times ne s’y est pas trompé : « First Digital Pill Approved to Worries About Biomedical ‘Big Brother’ » …

reblog via Le premier médicament «avalé-connecté» bientôt sur le marché. Applaudir ou s’inquiéter ?