La guerre post-humaniste 2 : Géopolitique du génome

La prolifération de nouveaux éléments nous pousse à prolonger notre dossier du numéro précédent, à propos des initiatives dans la modification génétique à l’international.

Actualités touchant le génome

Les CAR-T cells permettent de traiter certains cancers du sang en modifiant génétiquement les cellules du patient. Le CAR (Chimeric Antigen Receptor) est un récepteur antigénique chimérique que l’on intègre par modification génétique aux cellules immunitaires du patient (les lymphocytes T) afin qu’elles identifient et attaquent les cellules tumorales. Ce ne serait ni plus ni moins « la découverte de l’année », selon la puissante association américaine de cancérologie ASCO. Selon les premiers résultats, le taux de rémission est de 83 % pour les patients traités au CAR-T cells contre environ 15 % pour les autres enfants et adultes jusqu’à 25 ans atteints de leucémie aiguë réfractaire. Dans le cas de patients atteints d’un lymphome diffus à grandes cellules B réfractaire, une rémission complète ne toucherait que 5 à 10 % des individus traités avec une chimiothérapie conventionnelle contre 40 % de rémission complète 15 mois après le traitement par CAR-T. Les deux hôpitaux parisiens Saint-Louis et Robert-Debré seront les premiers labellisés « centres experts pour le traitement par cellules CAR-T » en Europe. Toujours en France, l’Agence nationale de sécurité du médicament et des produits de santé (ANSM) a délivré aux laboratoires américains, Gilead Sciences et Kite (sa filiale axée sur la thérapie cellulaire autologue T), et au groupe pharmaceutique suisse Novartis des autorisations temporaires d’utilisation (ATU) de ces traitements, nécessaires avant une possible autorisation de mise sur le marché (AMM).

Le laboratoire pharmaceutique Glaxosmithkline ou GSK (l’un des plus gros au monde) a annoncé le rachat des données génétiques de 5 millions de clients au spécialiste US de l’analyse génétique 23andMe (un des plus grands fabricants de tests ADN à domicile) pour un coût de 300 M$. Ces clients ont transmis leur salive à la société pour en savoir plus sur leur ADN, leur ascendance et ainsi obtenir des rapports de santé personnalisés. GSK a racheté toutes ces informations pour leurs études pharmaceutiques. Plus de 5 millions de personnes ont envoyé un échantillon de salive en échange d’informations, notamment sur leur risque de développer un cancer du sein.

Avec la manipulation génétique, une équipe de scientifiques de l’Université de Californie à Los Angeles (UCLA) a réussi à transférer la mémoire d’un escargot de mer à un autre, le 14 mai dernier. L’expérience, décrite dans la revue scientifique eNeuro, consiste à stimuler la mémoire des escargots grâce à une sensibilisation par faible choc électrique sur la queue. En provoquant leur réflexe défensif de contraction de la queue, les escargots « entraînés » après 24 h, contractent ce membre pendant cinquante secondes contre une seconde pour les « non entraînés ». L’ARN (acide nucléique essentiel dans le transport du message génétique et la synthèse des protéines) du système nerveux des escargots entraînés est ensuite extrait pour l’injecter dans les spécimens non entraînés. Vingt-quatre heures plus tard, ces derniers avaient le même réflexe de défense que les escargots ayant subi des chocs électriques. À terme, les chercheurs espèrent transférer la mémoire d’un humain à un autre. Une expérience qui fait penser à celle réalisée fin 2017, où le collectif OpenWorms avait entrepris d’analyser minutieusement le cerveau du ver Caenorhabditis elegans pour le reproduire virtuellement et le télécharger dans un robot Lego. Résultat : sans aucune programmation, le cerveau virtuel a pris le contrôle du robot, qui s’est comporté comme l’animal et a même réagi à la simulation des capteurs de nourriture destinés au ver.

La guerre post-humaniste

Les ciseaux moléculaires CRISPR et la course à la modification génétique

Actuellement, un nouveau projet international est en cours pour réécrire entièrement le génome humain. Le séquençage du génome, qui consiste à identifier tous les gènes de notre espèce, avait déjà pris 13 années. L’objectif de ce nouveau programme nommé Recode est de créer un génome 100 % synthétique. Si l’objectif reste généralement thérapeutique dans un premier temps, se posent toujours des questions éthiques, à différents niveaux selon les espaces civilisationnels [cf. Géopolitique Profonde n° 6].

Réécrire un génome, c’est une sorte de formatage ou de remise à zéro des gènes humains. Le qualificatif de « modifié génétiquement » se réfère à des plantes et des animaux qui ont été modifiés d’une manière qui ne serait pas apparue naturellement à travers l’évolution, comme le transfert d’un gène d’une espèce à une autre pour doter l’organisme d’un nouveau caractère (résistance aux parasites ou une tolérance accrue à la sécheresse). L’entreprise biopharmaceutique Cellectis a par exemple créé son outil d’édition de génome appelé TALEN en association avec l’Institut Wyss de Harvard pour couper l’ADN, ôter, coller, modifier toutes les mutations, tous les défauts ou toutes les particularités acquises au cours de milliers d’années d’évolution.

Pour l’exemple, l’agence militaire étasunienne DARPA (Defense Advanced Research Projects Agency) et le ô grand milliardaire philanthrope Bill Gates auraient investi 100 M$ dans le « forçage génétique ». Cette technique de manipulation génétique a pour but de modifier un gène pour qu’il soit ensuite rapidement transmissible à toute une espèce animale ou végétale. Ceci pourrait, par exemple, limiter la capacité de reproduction d’une espèce, la rendre plus sensible ou insensible à une maladie ou à un produit chimique. Des expérimentations pourraient se dérouler en Australie, en Nouvelle-Zélande, au Burkina Faso, en Ouganda, au Mali et au Ghana. La Fondation Bill & Melinda Gates aurait au passage également consacré 1,6 M$ en lobbying via la société Emerging A.G pour promouvoir cette expérimentation.

Aujourd’hui, ce sont les technologies d’édition de gènes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) qui sont les plus médiatisées. Elles permettent d’introduire de nouveaux caractères en réécrivant directement le code génétique de la cible (végétaux, animaux, humains). Dans l’agriculture, cela présente l’avantage d’être plus rapide et plus précis que la culture conventionnelle (sélection des plantes), tout en étant moins controversé que les techniques OGM. En 2012, l’outil d’édition génique CRISPR-Cas9 émerge de la collaboration des chercheuses française Emmanuelle Charpentier et américaine Jennifer Doudna avec la publication de leurs recherches à l’Université de Californie à Berkeley.

CRISPR se traduit littéralement par « Courtes répétitions palindromiques groupées et régulièrement espacées ». Il s’agit de famille de séquences répétées dans l’ADN. Le deuxième terme Cas9, quant à lui, renvoie à l’endonucléase, une enzyme capable de couper les deux brins de l’hélice d’ADN. En combinant les deux, on obtient les « ciseaux moléculaires » CRISPR-Cas9 qui permettent d’éditer le génome, de couper l’ADN, d’inactiver des gènes ou d’en introduire. Ses applications peuvent être plurielles dans la recherche fondamentale, la médecine et la biotechnologie. La simplicité de cette technique et son bas coût peuvent amener à des dérives multiples, dans la manipulation d’embryons par exemple.

Contrairement aux deux méthodes de coupures d’ADN 1) des protéines TALEN (Transcription activator-like effector nucleases – nucléases effectrices de type activateur de transcription) et 2) des nucléases à doigt de zinc — le ciblage de l’ADN par le procédé CRISPR-Cas9 est plus direct et ne requiert pas de modification de la protéine, mais seulement de l’ARN guide. De nombreuses sociétés investissent dans la recherche sur ce nouvel outil d’altération génétique.

Le US Patent and Trademark Office (USPTO – Bureau américain des brevets et des marques de commerce) a accordé deux nouveaux brevets CRISPR à l’Université de Californie à Berkeley. En 2017, l’instance a accordé à Feng Zhang et à son équipe du Broad Institute of Harvard et du MIT un autre brevet convoité pour utiliser l’outil CRISPR-Cas9 dans l’édition d’ADN de mammifères : il y a une bataille juridique pour déterminer lequel des scientifiques devient propriétaire, car l’équipe de Jennifer Doudna a fait appel de cette décision. Ce 10 septembre 2018, la Cour d’appel des États-Unis a confirmé cette dernière décision du USPTO. Le brevet donne à un inventeur la propriété légale de son invention ou découverte. Il est le seul à pouvoir donner l’autorisation à quiconque voulant utiliser son idée et collecter l’argent de l’octroi de la licence.

Deux sociétés américaines, Indoor Technologies et Felix Pets, se font concurrence pour modifier génétiquement des embryons de chats afin de les rendre hypoallergéniques, c’est-à-dire qu’il ne présenteraient plus le gène qui provoque des allergies aux humains. Des brevets ont été déposés en 2016 pour utiliser le Crispr-Cas9 pour couper le gène bien identifié qui provoque l’allergie, la protéine Fel d 1.

L’américain Sangamo Therapeutics a testé un procédé d’édition du génome in vivo destiné à lutter contre le rare syndrome de Hunter (maladie génétique lysosomale) sur quatre personnes. Les premiers résultats non réussis de son essai clinique ont été publiés. Les médecins ont utilisé les nucléases à doigt de zinc en tant que ciseau moléculaire et non CRISPR.

L’utilisation de CRISPR sur l’Homme est plus compliquée à tester en raison des réflexions éthiques que le procédé suscite. Les premiers essais cliniques utilisant CRISPR sur l’être humain ont débuté rapidement, avec un recul encore probablement insuffisant. En 2017, des scientifiques américains de l’Oregon Health & Science University ont franchi un cap en déclarant utiliser cette technologie pour éditer des embryons humains après deux ans d’attente pour l’autorisation éthique de leurs expériences. L’hôpital de l’Université de Pennsylvanie et l’agence US de régulation Food and Drug Administration (FDA) ont mis tout autant de temps à obtenir le feu vert pour tester une thérapie basée sur CRISPR sur 18 patients cancéreux. La société CRISPR Therapeutics de Cambridge (Massachusetts) aimerait aussi démarrer des essais cliniques de phase I en utilisant CRISPR pour traiter des patients atteints du trouble bêta-thalassémies (maladie génétique de l’hémoglobine). L’américain Editas Medicine doit également lancer sous peu un essai clinique utilisant la technique CRISPR pour traiter une forme rare de cécité.

Au vu des ralentissements prudents de la FDA à propos des essais cliniques sur l’Homme sur le sol américain depuis mai 2018, un premier essai clinique utilisant CRISPR-Cas9 chez l’homme a été lancé à l’hôpital de Ratisbonne (Allemagne). Deux sociétés US, Vertex Pharmaceuticals et CRISPR Therapeutics, se sont associées pour développer le traitement expérimental CTX001. L’essai clinique (phase 1/2) compte douze adultes atteints de bêta-thalassémie (maladie génétique de l’hémoglobine) pour prélèvement de leurs cellules sanguines, traitement in vitro et réinjection. C’est la course aux essais cliniques.

Chez les Britanniques, l’organisme de bienfaisance indépendant basé à Londres Nuffield Council on Bioethics (NCB) a pondu un rapport sur les problèmes sociaux et éthiques liés à l’édition et à la reproduction du génome humain. Le bienfaiteur autoproclamé a pour habitude d’analyser les questions éthiques en biologie et en médecine. Selon sa récente étude, l’édition d’embryons, de spermatozoïdes et des ovules humains est « moralement acceptable» sous la condition que « la modification ne compromette pas le bien-être de l’individu en devenir (la personne issue de l’embryon qui aura subi une édition génétique) ou que cela n’augmente pas le désavantage, la discrimination ou la division dans la société ».

Au Japon, les autorités étudient une autorisation prochaine de la recherche fondamentale sur les modifications génétiques des embryons humains (avec l’outil CRISPR-Cas9), dans le cadre de la recherche sur les traitements de procréation assistée. La validation de la directive est prévue d’ici avril 2019 après consultation de la population. Les embryons altérés seront ceux issus de fécondation in vitro non utilisés. Il sera interdit de les réimplanter dans l’utérus de femmes après modification. Nous voilà rassurés.

La Chine lance également des programmes de thérapie génique d’envergure internationale. La belliciste banque Goldman Sachs juge que « la Chine bat les États-Unis dans la course aux armements géniques ». Dès 2013, les scientifiques chinois ont utilisé CRISPR sur l’ADN humain, et en avril 2015, ils ont modifié directement sur des embryons un gène responsable d’une maladie du sang. Les embryons non viables n’ont pas survécu, mais la polémique a marqué les esprits. Les scientifiques du pays ont modifié génétiquement les cellules d’au moins 86 patients atteints du cancer et du VIH dans le pays en utilisant la technologie CRISPR-Cas9.

La course scientifique entre les deux superpuissances asiatique et nord-américaine est tellement intense qu’elle est qualifiée de « Spoutnik 2.0 » en référence à la concurrence spatiale opposant l’URSS et les USA durant la Guerre froide. L’École de Guerre économique a relevé qu’une équipe chinoise a fait naître des chiens de race beagles en supprimant le gène de la myostatine (protéine qui inhibe la croissance musculaire). En conséquence, les animaux sont nés avec une masse musculaire doublée par rapport à celle habituellement admise. On imagine très bien les perspectives sur l’Homme.

Contrebalançant l’enthousiasme entourant toutes ces nouvelles techniques, des scientifiques du Centre Wellcome Sanger ont récemment établi dans la revue Nature Biotechnology que l’édition de gènes CRISPR-Cas9 produit des altérations voire des suppressions dangereuses d’ADN dans les cellules de souris et d’homme. D’autres études récentes publiées dans Nature Medicine montrent que la modification des génomes avec CRISPR-Cas9 pourrait augmenter le risque que les cellules altérées déclenchent un cancer (des ovaires, du côlon, du rectum ou de l’œsophage). Des chercheurs de l’Institut suédois Karolinska et, séparément, de Novartis ont constaté que les cellules dont les génomes sont édités avec succès par CRISPR-Cas9 ont le potentiel d’ensemencer des tumeurs à l’intérieur d’un patient. Les deux études se concentrent sur le gène p53 qui joue un rôle majeur dans la prévention des tumeurs en détruisant des cellules avec de l’ADN endommagé. Selon des recherches antérieures, la plupart des tumeurs humaines ne peuvent tout simplement pas se former si la cellule p53 fonctionne correctement. Si elle est dysfonctionnelle, le risque de cancers pourrait être plus élevé. Malheureusement, p53 est aussi une sorte de défense naturelle contre les modifications du génome faites par CRISPR-Cas9. Lorsque les chercheurs utilisent ces ciseaux moléculaires pour couper et remplacer un peu d’ADN, p53 passe à l’action, provoquant l’autodestruction des cellules éditées. Cela rend l’édition CRISPR essentiellement théorique, ce qui pourrait expliquer pourquoi la méthode ne serait pas si efficace.

La version CRISPR-Cas12 serait encore plus précise et spécifique que le Cas9, qui ne reconnaît que 2 ou 3 nucléotides pour se fixer solidement à l’ADN. CRISPR-Cas12 « agit plus comme un velcro, en multipliant les liaisons faibles. Tous les nucléotides de la séquence génétique doivent être reconnus pour qu’une fixation solide se fasse ». Une utilisation généralisée de ce procédé devrait être prochainement mise en place.

Franck Pengam
Extrait de Géopolitique Profonde n°7 – Septembre-Octobre 2018

UC Berkeley finalise une victoire avec deux brevets CRISPR

Il y a eu une bataille juridique pour déterminer lequel des scientifiques dont la recherche a mené à la découverte de CRISPR devient propriétaire (et collecter de l’argent de l’octroi de licence).

Le US Patent and Trademark Office (USPTO) vient de décider d’accorder non pas un, mais deux nouveaux brevets CRISPR à UC Berkeley, la maison de la biochimiste Jennifer Doudna, que beaucoup considèrent comme l’inventrice de la méthode CRISPR.

Un brevet confère à un inventeur la propriété légale de son invention ou découverte unique. Si quelqu’un d’autre veut utiliser cette invention, il doit obtenir le feu vert du propriétaire du brevet, et doit généralement payer pour le privilège. Et quand vous considérez le formidable potentiel de CRISPR, et les différents domaines dans lesquels il peut être utilisé, vous commencez à avoir une idée de l’utilité des brevets CRISPR.

En 2012, Doudna et ses collègues ont mis en branle la révolution CRISPR en publiant le premier article sur l’enzyme dans Science. Mais en 2017, l’USPTO a accordé à Feng Zhang et à son équipe du Broad Institute of Harvard et du MIT le brevet convoité pour l’utilisation de CRISPR-Cas9 pour éditer l’ADN chez les mammifères. L’équipe de Doudna fait appel de cette décision, mais elle doit faire face à une bataille difficile.

Alors que le brevet CRISPR-Cas9 actuellement détenu par l’équipe Broad est sans doute le plus précieux, et non le seul brevet CRISPR existant. En avril, l’USPTO avait déjà délivré 60 brevets liés à CRISPR aux inventeurs de 18 organisations différentes, chacune étant suffisamment différente pour que l’USPTO la considère comme une invention unique.

Mardi, le bureau a accordé à l’UC Berkeley son premier brevet relatif à CRISPR, demandé par l’université en 2014. Celui-ci se concentre sur l’utilisation de CRISPR-Cas9 pour éditer l’ARN simple brin (et non l’ADN).

L’USPTO accordera à UC Berkeley l’autre brevet que l’université a demandé en 2015, la semaine prochaine, selon un rapport de STAT News. Ce brevet est basé sur l’utilisation du système CRISPR-Cas9 standard pour éditer des régions de 10 à 15 paires de bases. L’UC Berkley voit un certain nombre d’applications potentielles dans la recherche, le diagnostic et l’industrie pour son nouveau brevet CRISPR.

Mais le reste de la communauté scientifique le voit différemment. Un porte-parole du Broad a déclaré à STAT que les revendications du brevet délivré “sont extrêmement étroites et auraient peu ou pas d’effet sur le domaine CRISPR.” Un autre expert, Jacob Sherkow, professeur agrégé à la New York Law School, a déclaré que le deuxième brevet aura une valeur commerciale assez minime.

Peu importe l’importance de ces brevets spécifiques, le nombre de brevets délivrés témoigne du nombre de recherches consacrées à CRISPR. Et il n’est pas impossible que le Broad les conteste de toute façon.

STAT News, Futurism

CRISPR pourrait causer le cancer

Un nouvel obstacle sérieux pour CRISPR : deux études montrent que les cellules éditées pourraient causer le cancer

La modification des génomes avec CRISPR-Cas9 pourrait augmenter le risque que les cellules altérées, destinées à traiter la maladie, déclenchent le cancer, selon deux études publiées lundi – un changeur de jeu potentiel pour les entreprises développant des thérapies basées sur CRISPR. Les experts prennent au sérieux la découverte du risque de cancer.

Dans les études publiées dans Nature Medicine, les scientifiques ont constaté que les cellules dont les génomes sont édités avec succès par CRISPR-Cas9 ont le potentiel d’ensemencer des tumeurs à l’intérieur d’un patient. Selon des chercheurs de l’Institut suédois Karolinska et, séparément, de Novartis, cela pourrait faire craindre des bombes à retardement pour certaines cellules CRISPR.

Les deux études se concentrent sur le gène p53, connu pour jouer un rôle majeur dans la prévention des tumeurs en détruisant des cellules avec de l’ADN endommagé. Selon des recherches antérieures, la plupart des tumeurs humaines ne peuvent tout simplement pas se former si p53 fonctionne correctement.

Malheureusement, p53 est aussi une sorte de défense naturelle contre les modifications du génome faites par CRISPR-Cas9. Lorsque les chercheurs utilisent CRISPR-Cas9 pour couper et remplacer un peu d’ADN, p53 passe à l’action, provoquant l’auto-destruction des cellules éditées. Cela rend l’édition CRISPR essentiellement théorique, ce qui pourrait expliquer pourquoi CRISPR n’est pas très efficace. Cela pourrait signifier que la cellule p53 ne fonctionne pas comme elle le devrait. Et une p53 dysfonctionnel peut être précurseur d’un grand nombre de cancers, tels que ceux dans les ovaires, le côlon et le rectum, et l’œsophage.

« En choisissant des cellules qui ont réparé avec succès le gène endommagé que nous avions l’intention de corriger, nous pourrions par inadvertance également choisir des cellules sans p53 fonctionnelle », a déclaré Emma Haapaniemi, l’une des auteurs de l’étude de Karolinska dans un communiqué de presse. « Si elles sont transplantées chez un patient, comme en thérapie génique pour des maladies héréditaires, de telles cellules pourraient donner naissance à un cancer, ce qui soulève des inquiétudes quant à l’innocuité des thérapies géniques basées sur CRISPR. »

Premièrement, il s’agit d’études très précoces présentant des “résultats préliminaires”, comme l’a expliqué le biochimiste Bernhard Schmierer, co-dirigeant de l’étude Karolinska. “On ne sait pas si les résultats se traduisent en cellules réellement utilisées dans les études cliniques actuelles”, a-t-il ajouté.

Deuxièmement, les études se concentrent sur un seul type de vérification CRISPR : remplacer l’ADN pathogène par un ADN sain (correction génétique) en utilisant CRISPR-Cas9. Alors que Cas9 est l’enzyme CRISPR la plus connue, il y en a d’autres – Cpf1, par exemple – et nous ne savons pas encore si elles causeraient les mêmes problèmes avec p53.

Nous pouvons également utiliser CRISPR pour éliminer simplement l’ADN pathogène sans le remplacer (modification du gène). Ce type d’édition peut rester valable même lorsque p53 est fonctionnel, a noté Haapaniemi. C’est le type de changement génétique au centre d’un certain nombre de projets CRISPR de haut niveau : les essais de CRISPR Therapeutics sur la drépanocytose et la thalassémie, les recherches d’Editas Medicine sur la cécité et les recherches sur les lymphocytes T de l’Université de Pennsylvanie – le premier essai de CRISPR chez l’homme aux États-Unis.

Les auteurs des deux nouvelles études admettent que leur recherche ne signifie pas que CRISPR-Cas9 est mauvais ou dangereux. Nous devons juste procéder avec prudence.

Malheureusement, les détails les plus subtils de ces études semblent perdus pour les détenteurs des cordons de la bourse – un certain nombre de sociétés axées sur CRISPR ont vu leurs actions chuter après la publication des études.

Haapaniemi, E et al.CRISPR/Cas9-genome editing induces a p53-mediated DNA damage response. Nature Medicine; 11 June 2018; DOI: 10.1038/s41591-018-0049-z
STAT, Karolinska, University of Cambridge

Des chercheurs utilisent CRISPR pour éditer l’ADN en dehors de la cellule

La découverte du Gene Editing Institute du Delaware pourrait rapidement faire progresser les soins personnalisés contre le cancer. L’équipe a développé un nouvel outil CRISPR qui permet aux chercheurs de regarder CRISPR et de leur donner plus de contrôle dans le processus d’édition. Ils ont publié leur étude dans CRISPR Journal.

Cas9 est une protéine qui agit comme des ciseaux dans l’outil d’édition qu’est le système CRISPR-Cas9. Cas9 fonctionne très bien dans une cellule, mais il n’est pas très efficace lorsque les chercheurs extraient l’ADN d’une cellule. C’est un problème car les chercheurs essaient d’utiliser l’outil pour de nouvelles applications.

“Lorsque vous travaillez avec CRISPR à l’intérieur d’une cellule, vous travaillez dans une boîte noire où vous ne pouvez pas vraiment observer les rouages des machines qui font ces choses incroyables. Vous pouvez voir les résultats, les modifications apportées aux gènes, mais pas nécessairement comment vous y êtes arrivé, ce qui est important pour s’assurer que CRISPR puisse être utilisé en toute sécurité pour traiter les patients”, a déclaré Eric Kmiec, chercheur principal et directeur de Gene Editing Institute.

Pour créer un outil CRISPR acellulaire (sans cellule), Kmiec et ses collègues ont remplacé Cas9 par une autre protéine : Cpf1, également connue sous le nom de Cas12a. Avec CRISPR-Cpf1, ils ont découvert qu’ils pouvaient retirer une molécule d’ADN appelée plasmide d’une cellule et l’éditer dans un tube à essai.

https://iatranshumanisme.com/2015/10/02/genome-editing-une-alternative-a-crispr-cas9/

Selon les chercheurs, c’est le premier outil CRISPR qui peut le faire, et cela pourrait être une amélioration par rapport à CRISPR-Cas9 à plusieurs égards.

Premièrement, il permet aux chercheurs de voir ce que CRISPR est en train de faire. Comme Kmiec l’a mentionné, c’est important pour que les scientifiques puissent s’assurer que le traitement est sans danger pour les patients.

Deuxièmement, c’est un moyen plus rapide pour effectuer des tests de diagnostic. Les mutations qui causent le cancer ne sont pas les mêmes chez tous les patients. Un médecin pourrait utiliser CRISPR-Cpf1 pour déterminer la mutation spécifique causant la maladie chez un patient plus rapidement qu’avec CRISPR-Cas9, selon Kmiec. Ceci pourrait aider un médecin à déterminer la meilleure option de traitement pour ses patients.

Troisièmement, les coupes spécifiques faites par Cpf1 pourraient être plus utiles que celles faites par cas9. Lorsque Cas9 fait une coupe, il laisse des extrémités émoussées sur le gène. Ce n’est pas grave si la coupe est tout ce qu’un chercheur veut faire, mais l’extrémité émoussée n’est pas géniale pour s’attacher à un nouveau morceau de code génétique. Cpf1, d’autre part, laisse des «extrémités collantes» qui facilitent l’insertion d’un nouvel ADN pour un chercheur.

“Avec cette nouvelle avancée, nous devrions être en mesure de travailler avec des cultures de laboratoire et de réaliser des modifications génétiques en moins d’un jour, ce qui réduit considérablement le temps nécessaire pour le diagnostic par rapport à d’autres outils CRISPR, et avec beaucoup plus de précision. Ceci est particulièrement important pour les diagnostics liés aux soins du cancer, où le temps est critique,” a déclaré Eric Kmiec.

Le Gene Editing Institute est déjà à la recherche d’un partenaire commercial pour utiliser son outil CRISPR-Cpf1 dans le diagnostic du cancer.

CRISPR Journal, EurekAlert

Ouvrir la voie aux générations futures génétiquement modifiées : comment le rapport de la NAS fait fi du large consensus international

Par : Leah Lowthorp

Le 14 février, un comité de la National Academy of Sciences (NAS) et de la National Academy of Medicine (NAM) a publié son très attendu rapport intitulé Human Genome Editing: Science, Ethics, and Governance. La principale conclusion qui s’en dégage est qu’il faut faire preuve de prudence à l’égard de l’édition génique de la lignée germinale humaine, ou le génie génétique des générations futures. Ne vous laissez toutefois pas impressionner par cette mise en garde, ce rapport donne pour la première fois le feu vert à la modification germinale chez l’homme, rompant radicalement avec le consensus international, établi depuis longtemps, voulant que les interventions sur la lignée germinale humaine devraient demeurées interdites.

Ce faisant, le rapport de la NAS fait abstraction de l’importance et de l’étendue de l’opposition mondiale actuelle à l’égard de la modification germinale humaine – plus de 40 pays du monde entier ont interdit l’édition des gènes de gamètes ou d’embryons humains pour la reproduction, à l’instar du Conseil de l’Europe dans sa Convention d’Oviedo de 1997 et de l’UNESCO dans son rapport mis à jour sur le génome humain et les droits de l’homme de 2015. Ce dernier précise que :

Les interventions sur le génome humain ne soient admises que pour des raisons préventives, diagnostiques ou thérapeutiques et sans apporter de modifications chez les descendants, comme affirmé dans l’Article 13 de la Convention d’Oviedo. L’alternative serait de mettre en péril la dignité inhérente et donc égale de tous les êtres humains et de faire renaître l’eugénisme, déguisé comme l’accomplissement du désir d’une vie améliorée.

Les dangers de l’édition du génome humain pour la reproduction

Curieusement, le rapport de la NAS s’éloigne aussi considérablement de la déclaration émise en conclusion de son propre sommet international sur l’édition du génome humain tenu il n’y a que quatorze mois (voir aussi : Une conférence scientifique internationale sur CRISPR-Cas9). Cette déclaration, rédigée par le comité distinct de la NAS qui a organisé le sommet, soulignait qu’il serait irresponsable d’aller de l’avant avec cette technologie sans un « vaste consensus sociétal ». (Consulter ce lien pour une critique bien argumentée de cette volte-face par un membre du comité organisateur du sommet.)

En d’autres mots, l’unique position réunissant un vaste consensus sociétal à l’heure actuelle est celle qui appuie une interdiction internationale. Le nouveau rapport de la NAS, en utilisant une mise en garde pour frayer le chemin aux essais cliniques de modification germinale humaine, balaie d’un revers de la main le consensus international actuel et les préoccupations fondamentales sur lesquelles il repose. La NAS a aussi manifestement passé sous silence ce large consensus international lors de sa conférence de presse, que l’on peut voir ici.

Au cours de cet événement, le coauteur du rapport, Richard Hynes, a été interrogé sur les répercussions de l’ouverture de cette voie précédemment fermée à la modification germinale humaine. Contournant la question, il a parlé de l’opposition internationale comme si elle faisait partie du passé, et a semblé suggérer que l’unique raison de cette opposition était qu’avant toute chose la technologie de modification germinale n’était pas réalisable ou sécuritaire à l’époque :

Dans le passé, plusieurs ont pris position, affirmant qu’on devrait s’abstenir [de modifier la lignée germinale humaine], en grande partie parce qu’il n’y avait aucun moyen de concevoir une manière de le faire. De le faire de façon sécuritaire. C’était une idée théorique, qui semblait comporter de nombreuses complications et qui n’était pas vraiment réalisable de toute façon.

Cependant, l’opposition à la modification germinale humaine a toujours été motivée non pas que par des inquiétudes sur le plan de la faisabilité technique ou sécuritaire, mais aussi par une multitude de questions éthiques et sociales pour le futur de l’humanité.

Mais ne me croyez pas sur parole. J’ai demandé à plusieurs spécialistes qui participent depuis longtemps au débat international de commenter la déclaration de M. Hynes :

Dr Roberto Andorno, professeur agréé en droit de l’université de Zurich et ancien membre du Comité de bioéthique de l’UNESCO :

Je ne suis pas d’accord…que la seule raison de l’opposition… dans le passé était que [la technologie] n’était pas sécuritaire ou réalisable. Il y avait (il y a) des inquiétudes fondamentales entourant les répercussions à long terme de la technique, et non pas seulement que des questions portant sur les risques immédiats ou les effets secondaires; une évidence lorsqu’on examine la grande quantité de littératures des années 90 sur les interventions germinales. [Et] le terme « réalisable » comme tel n’est pas une raison morale pour tenter ou non de faire quelque chose. Il est insensé de dire qu’une chose était interdite parce qu’elle n’était pas réalisable!

Dr Hille Haker, professeur de théologie de l’université Loyola de Chicago, conférencier au sommet international de la NAS et ancien membre du Groupe européen d’éthique des sciences et des nouvelles technologies de la Commission européenne :

Si j’examine la question sous l’angle de la réglementation internationale, ils ont raison d’affirmer que l’édition génique de la lignée germinale humaine n’a jamais été réaliste, mais il est faux de dire que c’est la seule raison pour laquelle on croyait qu’elle ne devait pas être pratiquée. On a toujours soutenu que ce ne sera jamais sécuritaire d’en faire l’expérimentation sur des embryons parce que personne ne sera jamais en mesure de prévoir ses ramifications ni ses effets sur les générations futures. Assurément, ils ne le savent pas encore aujourd’hui, mais ils sont prêts à courir le risque qui, nous croyons, constitue un fardeau indu pour les générations futures. L’édition génique germinale ne sera jamais une pratique responsable.

Dr David King, directeur fondateur du groupe de vigilance Human Genetics Alert, au Royaume-Uni :

Mis à part le fait qu’elles démontrent une totale ignorance de l’histoire de ce débat, les remarques de Robert Hynes expriment parfaitement l’attitude technocratique… que les questions morales et sociales sont sans consistance réelle. Bien entendu, le Conseil de l’Europe, l’UE et d’autres pays ont interdit l’édition de la lignée germinale [des humains] précisément en raison des implications morales et sociales, c.-à-d. la création d’une nouvelle forme d’eugénisme. Si les préoccupations étaient réduites à un souci de sécurité, la réponse politique la plus appropriée aurait été un moratoire et (ou) une réglementation [plutôt qu’une interdiction]… Il existe peu d’exemples de lois interdisant des applications précises de la science et de la technologie, et le fait qu’il en existe une pour ce cas-ci aurait dû donner à M. Hynes matière à réflexion : il doit bien y avoir de très fortes raisons pour cette interdiction.

Tous les trois spécialistes ont exprimé leur profonde déception à l’égard de la recommandation du rapport, qui franchit une ligne que de nombreux pays ont déjà convenue de ne pas franchir. Affichant un mépris flagrant pour les pourparlers laborieux entrepris depuis les dernières décennies par les décideurs du globe, ce rapport forme une recommandation qui, si elle était suivie, modifierait incontestablement le futur de l’humanité tout entière.

Traduction Stéphanie S.

Genetics and Society

Les problèmes éthiques associés à la modification des organismes par la technologie CRISPR-Cas9

Colloque de l’Académie des sciences du 21 février 2017

Depuis l’article visionnaire publié par Emmanuelle Charpentier et Jennifer Doudna dans Science en 2012, on assiste à une véritable révolution planétaire dans les approches utilisées pour modifier les génomes animaux ou végétaux à des fins de recherche fondamentale dans tous les domaines, ainsi que pour des applications médicales ou des améliorations de plantes ou d’animaux bien souvent dans des buts commerciaux. Les nombreux travaux publiés ces dernières années montrent que la technologie CRISPR-Cas9 est d’une puissance impressionnante, d’une rapidité évidente par rapport aux autres techniques existantes bien que parfois un peu surestimée, et d’une efficacité inespérée.

Cependant, l’approche n’est pas sans risque ! Le risque de création de mutations indésirées est réel et dépend de nombreux facteurs qu’il est important de connaître, répertorier et prendre en compte. Beaucoup d’Institutions, d’Académies, de Sociétés savantes se penchent sur les problèmes posés par les modifications ciblées chez les animaux, les plantes et aussi et surtout chez l’homme. Au cours de cette séance, une analyse des questions soulevées par l’utilisation de cette technologie chez les animaux, les plantes et chez l’homme sera présentée par trois spécialistes afin de susciter une réflexion de tous les membres de l’Académie et d’anticiper une prise de position de notre Académie.

Voir le programme et les résumés

Pourquoi le verdict sur les brevets CRISPR n’est pas terminé ?

Des recours juridictionnels en expérimentations en cours, l’histoire expliquant qui possède les droits relatifs à l’édition génétique par CRISPR–Cas9 est loin d’être finie

Le US Patent and Trademark Office (USPTO ou bureau des brevets et des marques de commerce des États-Unis) a rendu un verdict clé cette semaine dans la bataille concernant les droits de propriété intellectuelle associés à la technologie potentiellement lucrative d’édition génétique par CRISPR-Cas9.

L’USPTO a statué sur le fait que le Broad Institute de Harvard et le MIT à Cambridge pouvaient garder ses brevets sur l’utilisation de CRISPR-Cas9 sur des cellules eucaryotes. C’était un coup dur pour l’Université de Californie à Berkeley qui avait déposé ses propres brevets et espérait que ceux de Broad soient rejetés.

La bataille remonte à 2012, lorsque Jennifer Doudna à Berkeley, Emmanuelle Charpentier, alors à l’Université de Vienne, et leurs collègues, ont mis en évidence comment CRISPR-Cas9 pouvait être utilisée pour couper avec précision de l’ADN isolé. En 2013, Feng Zhang du Broad Institute de Harvard et ses collègues – ainsi que d’autres équipes – ont montré que CRISPR-Cas9 pouvait être utilisée pour éditer l’ADN de cellules eucaryotes de plantes, de bétail, et d’humains.

Berkeley a déposé un brevet plus tôt, mais l’USPTO a reconnu les brevets du Broad Institute en premier – décision qui a été maintenue cette semaine. Ce jugement implique de gros enjeux. Les propriétaires de brevets clés pourraient tirer des millions de dollars des applications industrielles de CRISPR-Cas9. La technique a d’ores et déjà donné un coup d’accélérateur à la recherche en génétique, et des scientifiques l’utilisent pour développer des animaux d’élevage résistant à certaines maladies ainsi que des traitements pour les maladies humaines.

Mais la bataille pour les droits de brevet de la technologie CRISPR est loin d’être terminée. Voici quatre raisons qui expliquent cette situation :

1. Berkeley peut faire appel de cette décision

Berkeley dispose de deux mois pour faire appel de la décision de l’USPTO, et il y a de fortes chances qu’elle le fasse. Une question clé est dans quelle mesure Berkeley a confiance dans le fait que ses propres brevets, une fois accordés, puissent couvrir les applications les plus lucratives en matière d’édition génétique chez les cellules eucaryotes, telles que générer de nouveaux végétaux destinés à l’agriculture ou encore développer des thérapies humaines.

La victoire de Broad est due à une différence essentielle : ses brevets précisent que CRISPR pourrait être adaptée afin d’être utilisée sur des cellules eucaryotes. Les brevets déposés par Berkeley n’ont pas précisé ce point. L’USPTO a ainsi donné droit à Broad en expliquant que les brevets de ce dernier n’interféraient pas avec ceux de Berkeley et qu’ils pouvaient, par conséquent, être reconnus. L’équipe de Berkeley a rapidement réagi, dès l’annonce du verdict, arguant que son brevet (si ce dernier est reconnu dans son état actuel) pouvait inclure l’utilisation de CRISPR-Cas9 sur n’importe quel type de cellule. Et l’équipe d’ajouter que ceci implique toute personne désireuse de vendre un produit résultant de l’utilisation de CRISPR-Cas9 dans des cellules eucaryotes aurait besoin de contracter une licence d’utilisation auprès de Berkeley et de Broad.

A ce stade, les détails de la décision prise par l’USPTO pourraient affaiblir les chances de Berkeley de renforcer les brevets relatifs aux cellules eucaryotes, ont déclaré des spécialistes des droits des brevets. Par exemple, la plupart des 50 pages de décision de l’USPTO avancent que l’utilisation de CRISPR-Cas9 dans des cellules eucaryotes (décrite dans le brevet déposé par Broad) requiert des inventions supplémentaires à celles décrites dans le brevet d’application de Berkeley.

Donc Berkeley a le sentiment qu’elle doit encore faire appel de cette décision. Et sa propriété intellectuelle fait déjà l’objet de licences d’utilisation par plusieurs compagnies souhaitant déployer la technologie CRISPR-Cas9 dans des cellules eucaryotes. Ces compagnies n’apprécieront sans doute pas d’avoir à payer une licence supplémentaire auprès de Broad pour poursuivre leurs travaux.

2. Les brevets européens sont encore disponibles

Les deux équipes ont déposé des brevets similaires en Europe et continuent de se battre pour ces derniers là-bas.

Une décision en Europe ne suivra pas nécessairement le même processus que celui de l’USPTO, fait remarquer Catherine Coombes, avocat spécialiste des brevets au sein de l’équipe propriété intellectuelle chez HGF à York (UK).

Selon la jurisprudence, l’Office européen des brevets (European Patent Office) pourrait déclarer que la découverte du système global d’édition génétique décrit dans le brevet déposé par Berkeley a été le moteur d’une « motivation suffisante » pour qu’on essaye de l’appliquer à des cellules eucaryotes. Si les juges européens en arrivent à cette conclusion, ils pourraient donc statuer que le brevet de Berkeley englobe les applications de CRISPR-Cas9 sur les cellules eucaryotes.

Cela donnerait un avantage à Berkeley, avantage qui lui manque aux USA. « Le fait que six groupes aient réussi à faire fonctionner CRISPR-Cas9 dans un environnement eucaryote en quelques semaines seulement montre l’ampleur de la motivation dans ce domaine » remarque Coombes.

Malgré tout, il y a peu de chances qu’une solution rapide soit apportée à la bataille qui se joue également en Europe. Coombes estime que les débats pourraient durer encore cinq ans, voire plus.

3. D’autres équipes défendent également les droits et brevets de CRISPR-Cas9

L’attention s’est portée sur la bataille Berkeley–Broad du fait que leurs brevets couvrent un champ d’action particulièrement vaste et qu’ils sont déterminants pour la plupart des applications commerciales de CRISPR-Cas9. Mais, selon l’entreprise IPStudies (à côté de Lausanne en Suisse), il existe 763 ensembles de brevets (groupes de brevets associés) relatifs à Cas9. Parmi ces derniers, certains réclament des droits d’utilisation pour certains aspects de l’édition génétique par CRISPR-Cas9. Et avec le temps, les propriétaires de ces brevets pourraient essayer de faire valoir leurs droits.

Cela n’arrivera peut-être pas jusqu’à ce que les compagnies utilisant CRISPR-Cas9 commencent à faire de l’argent à partir de leurs produits. Alors, n’importe qui possédant un brevet similaire pourrait engager des poursuites en justice pour infraction ou demander des royalties.

Quand ce temps arrivera, il faudra s’attendre à un nombre considérable de plaintes déposées par les propriétaires de brevets, alerte Jacob Sherkow, spécialiste de la propriété intellectuelle à la New York Law School à New York. « N’importe qui, ainsi que ses cousins et petits cousins, affirmera qu’il est intervenu à un moment ou un autre dans l’invention qui a mené au dépôt du brevet de Broad » déclare t’il. « Broad doit se préparer à des années de batailles ».

4. La technologie CRISPR va bien au-delà de ce que les brevets couvrent actuellement

Les chercheurs, qu’ils travaillent pour une structure académique ou pour l’industrie, ont poussé les études sur l’édition génétique par CRISPR bien au-delà du périmètre des brevets de Broad et de Berkeley.

Tous ces brevets impliquant l’utilisation de CRISPR-Cas9 s’appuient sur la capacité de l’enzyme Cas à inciser de l’ADN. Mais il existe des solutions de rechange à Cas9, qui possèdent d’autres fonctions, et qui constituent des moyens de contourner la bataille de brevets dans laquelle sont engagés Broad et Berkeley.

Cpf1 une alternative à CRISPR-Cas9 ?

Parmi ces solutions de rechange, Cpf1, une enzyme potentiellement plus simple à utiliser et plus précise que cas9 dans certains cas. Broad a déjà déposé des brevets relatifs aux applications de Cpf1 dans l’édition génétique, et vendu les licences à la compagnie biotechologies Editas Medicine à Cambridge au Massachusetts (qui a également contracté des licences auprès de Broad pour l’utilisation de CRISPR-Cas9). Si l’on en croit IPStudies, au total, 28 groupes demandent des brevets relatifs à Cpf1, et toutes ces demandes n’émanent pas de Broad.

Des rapports relatifs à d’autres enzymes se propagent. En décembre, des chercheurs de Berkeley ont affirmé qu’ils avaient découvert deux nouvelles alternatives à Cas9, CasX et CasY. Et des chercheurs sont peut-être déjà en train de déposer des brevets sur des solutions de rechange non publiées. En général, l’application d’un brevet aux USA ne devient publique que 18 mois après le dépôt.

Sherkow assimile la situation actuelle à celle qu’a vécut la PCR (polymerase chain reaction, c’est-à-dire amplification en chaîne par polymérase ou réaction en chaîne par polymérase) à ses débuts. La PCR est une technique utilisée pour amplifier des segments d’ADN très rapidement devenue incontournable en biologie moléculaire. Les laboratoires utilisaient initialement une seule enzyme, la Taq1 polymérase, pour mener à bien le protocole. « Maintenant, si vous parcourez le catalogue, il y a pour ainsi dire un entrepôt Amazon de polymérases que l’on peut utiliser en fonction de la réaction particulière souhaitée», déclare t’il.

Les gens associent les aspects commerciaux de CRISPR à cette étonnante bataille de brevets, constate Sherkow. « C’est passer à côté du contexte bien plus général de la situation. »

traduction Virginie Bouetel

Nature doi:10.1038/nature.2017.21510

Se souvenir de Ruth Hubbard

Posté par Marcy Darnovsky le 8 septembre 2016

Ruth Hubbard — éminente biologiste, érudite féministe, aux multiples facettes dans la défense de la justice sociale et critique de ce qu’elle appelle « le mythe du gène » — est décédée le 1er septembre à l’âge de 92 ans. Ses efforts d’intérêt scientifique et publique à suivre et à façonner la politique de la génétique humaine ont été une source d’inspiration importante pour beaucoup de travaux sur ces questions aujourd’hui, y compris ceux qui ont contribué à établir le Center for Genetics and Society.

En 1974, Ruth est devenue la première femme à recevoir une titularisation dans le département de biologie de l’Université d’Harvard. En 1983, elle a été membre fondateur du Council for Responsible Genetics. Elle a également siégé au Conseil d’administration du Conseil des peuples autochtones sur le biocolonialisme et le Massachusetts chapter of the American Civil Liberties Union.

Ses ouvrages incluent The Politics of Women’s Biology (1990), Exploding the Gene Myth: How Genetic Information is Produced and Manipulated by Scientists, Physicians, Employers, Insurance Companies, Educators, and Law Enforcers (with Elijah Wald, 1993), and Profitable Promises:  Essays on Women, Science, and Health (2002).

Ruth a pris une série de défis politiques et sociaux liés à la politique de la science, le déterminisme génétique, la race et le sexe. Parmi ces derniers était la modification de la lignée germinale humaine, dont elle s’est fortement opposée. En 1999, elle a cosigné « Human germline gene modification: a dissent » – Modification génique germinale humaine : une dissidence – avec Stuart Newman et Paul Billings dans The Lancet.

En 1993, elle a écrit Exploding the Gene Myth (Exploser le mythe du gène) : de toute évidence, les implications eugéniques de la modification de la lignée germinale humaine sont énormes. Cela nous amène dans un monde nouveau (Brave New World) dans lequel les scientifiques ou autres arbitres auto-proclamés de l’excellence humaine, seraient en mesure de décider quels sont les « mauvais » gènes et quand les remplacer par des « bons »… Nous devons prêter attention aux expériences qui seront proposées pour les manipulations génétiques de la lignée germinale et de s’opposer aux justifications, raisonnements qui seront présentés et mis en avant pour faire avancer leur mise en œuvre, n’importe où et toutes les fois qu’ils sont discutés.

La nécrologie du Boston Globe pour Ruth fournit des détails sur sa vie longue et influente et sa carrière, tout comme une nécrologie rédigée par sa famille qui peut être trouvé ici.

source

Les experts prédisent que la Chine mettra au point les premiers surhommes génétiquement améliorés

La Chine est amenée à être le chef de file mondial dans l’amélioration génétique, étant donné que de nombreux pays occidentaux jugent cette science comme contraire à l’éthique et trop dangereuse à mettre en œuvre.

Une note d’avertissement pour les amateurs de CRISPR

Comme l’état de la science apporte des perspectives comme celles-ci plus proche de la réalité, un débat international fait rage sur l’éthique pour l’amélioration des capacités humaines avec les biotechnologies comme les pilules intelligentes, les implants cérébraux et l’édition de gènes.

Cette discussion s’est intensifiée l’an dernier avec l’avènement de l’outil d’édition de gènes CRISPR-cas9, qui soulève le spectre de bricoler avec notre ADN pour améliorer les caractéristiques comme l’intelligence, athlétisme, et même le raisonnement moral.

Alors, sommes-nous au bord d’un monde nouveau de l’humanité génétiquement amélioré ? Peut-être.

Il est raisonnable de croire que n’importe quel changement radical vers l’amélioration génétique ne sera pas centré dans les pays occidentaux comme les États-Unis ou le Royaume-Uni, où beaucoup de technologies modernes sont mises au point.

Au lieu de cela, l’amélioration génétique est plus susceptible d’émerger en Chine.

CRISPR peut modifier une espèce entière

De nombreuses enquêtes auprès des populations occidentales ont trouvé une opposition importante à de nombreuses formes d’amélioration humaine.

Par exemple, une récente étude Pew de 4 726 américains a constaté que la plupart ne voudraient pas utiliser un implant cérébral pour améliorer leur mémoire, et la majorité relative voient ces interventions comme moralement inacceptables.

Un examen plus large des sondages d’opinion ont trouvé une opposition importante dans des pays comme l’Allemagne, les États-Unis et le Royaume-Uni à sélectionner les meilleurs embryons pour l’implantation basée sur des traits non-médicaux comme l’apparence ou l’intelligence.

Il y a encore moins d’appui pour la modification directe des gènes afin d’améliorer les caractéristiques dans ce que l’on appelle les bébés sur-mesure ou à la carte.

L’opposition sur la mise en valeur, notamment l’amélioration génétique, dispose de plusieurs sources.

Le sondage Pew susmentionné a constaté que la sécurité est une préoccupation importante – en ligne avec des experts qui disent que bricoler avec le génome humain comporte des risques importants.

Pourquoi la Chine pourrait être à la tête de l’amélioration génétique ?

En Chine, l’amélioration génétique peut être liée à approuver plus généralement les attitudes à l’égard des programmes eugéniques anciens tels que l’avortement sélectif des foetus atteints de troubles génétiques graves, bien que plus de recherches sont nécessaires pour expliquer la différence.

Toutefois, les pays occidentaux croient que ce type de science est contraire à l’éthique et trop dangereux de poursuivre.

Les responsables américains ont déclaré que le financement fédéral de la recherche sur l’édition génétique germinale est interdit.

Alors que le financement gouvernemental de la Chine les a amené à être les premiers à modifier les gènes des embryons humains à l’aide de l’outil CRISPR-cas9 en 2015.

Les scientifiques chinois modifient encore des embryons humains

Les démocraties occidentales sont, par leur conception, sensible à l’opinion populaire.

Les politiciens élus seront moins enclins à financer des projets controversés et plus susceptibles de les restreindre.

En revanche, les pays comme la Chine qui ne disposent pas de systèmes démocratiques directs sont ainsi moins sensibles à l’opinion et les fonctionnaires peuvent jouer un rôle démesuré dans le façonnement de l’opinion publique pour l’aligner sur les priorités du gouvernement.

DailyMail