Le gouvernement canadien embrasse ouvertement le transhumanisme

Le texte et les diapositives qui suivent sont tirés directement de l’organisation du gouvernement fédéral du Canada, Horizons de politiques Canada. Il s’agit de transhumanisme et de technocratie purs qui visent à “l’intégration physique complète des entités biologiques et numériques” afin de “modifier l’être humain – notre corps, notre esprit et notre comportement“.

Qu’arrive-t-il lorsque la biologie et les technologies numériques fusionnent ?

Dans les années à venir, les technologies bionumériques pourraient être intégrées dans nos vies de la même manière que les technologies numériques le sont présentement. La convergence des systèmes biologiques et numériques pourraient changer notre manière de travailler, de vivre et même d’évoluer en tant qu’espèce. Plus qu’un changement technologique, cette convergence bionumérique pourrait transformer notre compréhension de nous-mêmes et nous amener à redéfinir ce que nous considérons comme humain ou naturel.

La convergence bionumérique pourrait avoir des répercussions profondes sur notre économie, nos écosystèmes et notre société. En nous tenant prêts à l’appuyer, tout en gérant les risques qui en découlent avec soin et en faisant preuve de sensibilité, nous serons en meilleure position pour gérer les considérations sociales et éthiques et pour orienter les conversations concernant les politiques et la gouvernance.

Guidé par son mandat, Horizons de politiques Canada (Horizons de politiques) souhaite amorcer un dialogue éclairé et utile sur les avenirs plausibles de la convergence bionumérique et sur les questions de politiques qui pourraient émerger. Dans ce premier document, nous définissons et explorons la convergence bionumérique – l’importance de l’explorer maintenant, ses caractéristiques, les nouvelles capacités qui pourraient en découler et quelques répercussions initiales sur les politiques. Nous voulons amorcer un dialogue avec un large éventail de partenaires et d’intervenants sur la forme que pourrait prendre notre avenir bionumérique, sur les répercussions que cette convergence pourrait avoir sur les secteurs et les industries, ainsi que sur l’évolution possible de notre relation avec la technologie, avec la nature et même avec la vie.

Qu’est-ce que la convergence bionumérique ?

La convergence bionumérique est l’association interactive, parfois au point de fusion, des technologies et des systèmes numériques, d’une part, et biologiques d’autre part. Horizons de politiques explore trois différentes voies de convergence.

Téléchargez le PDF pour poursuivre la lecture : Explorer la convergence bionumérique

convergence bionumérique

Qu’est-ce que la convergence bionumérique?

Dans cette vidéo, ils parlent de la convergence envisageable du numérique et du vivant, et de ses effets potentiels sur notre vie quotidienne.

Transcription

NARRATEUR : Les technologies numériques et les systèmes biologiques ont commencé à s’imbriquer et à fusionner de manières qui pourraient bouleverser nos hypothèses au sujet de la société, de l’économie, et du corps humain. C’est ce que nous appelons la convergence bionumérique.

Au cours des quarante dernières années, l’économie s’est transformée avec l’évolution numérique des technologies de l’information comme l’lnternet, les téléphones intelligents, les applis, et l’analyse de mégadonnées. La convergence bionumérique pourrait changer la façon dont nous concevons et produisons des biens, révolutionner les soins de santé et l’agriculture, modifier notre environnement, et même changer la façon dont l’être humain évolue en tant qu’espèce.

Aujourd’hui, de nombreuses innovations accélèrent ces changements, mais quels sont les éléments clés à surveiller?

Quelles nouvelles capacités bionumériques pourraient complètement transformer le monde?

AVALYNE DIOTTE : Je suis Avalyne.

MARCUS BALLINGER : Je m’appelle Marcus Ballinger.

ERIC WARD : Je m’appelle Eric Ward.

KRISTEL VAN DER ELST : Je suis Kristel Van der Elst.

PIERRE-OLIVIER DESMARCHAIS : Je m’appelle Pierre-Olivier Desmarchais.

MARCUS : L’idée du bionumérique, c’est vraiment celle de la convergence de deux domaines qu’on considère souvent comme séparés. En gros, on prend quelque chose de biologique et quelque chose de numérique et combine les deux.

Comme la « DragonflEye » par exemple, ce qu’ils font, c’est qu’ils prennent une libellule, donc une entité biologique, et ils lui mettent une puce sur le dos et ils le relient à un capteur qui permet de stimuler les nerfs de l’entité biologique et de contrôler la libellule. C’est une intégration simple de deux choses, assez évidente pour tout le monde.

L’autre, c’est celle où il y a d’énormes avancées dans un domaine qui dépendent d’avancées dans d’autres disciplines. Par exemple, on sait maintenant que les gènes activent ou désactivent des choses, mais on ne sait cela que parce que nous avons des technologies numériques énormes qui permettent de séquencer le génome. On peut utiliser l’intelligence artificielle pour repérer les bons gènes, donc on n’aurait pas pu avoir ces avancées en biologie sans les avancées du numérique.

La troisième possibilité, c’est une convergence plus conceptuelle. On pensait que la vie était plutôt aléatoire et imprévisible, quelque chose de mystérieux. Par contre on considérait les technologies numériques comme hautement prévisibles et précises, on programme un ordinateur pour une tâche particulière, et il n’en dévie pas du tout.

Ce qu’on observe dans cette convergence, c’est qu’on comprend maintenant la biologie. En fait, elle est beaucoup plus prévisible, beaucoup plus proche du numérique, on peut programmer des séquences génétiques ou programmer l’ADN pour faire des tâches spécifiques, donc on peut programmer des organismes d’une façon comparable à ce qu’on faisait pour les machines.

À l’inverse, on constate que les technologies numériques deviennent plus complexes, comme l’intelligence artificielle par exemple, qui se comporte parfois de façon inattendue. À bien des points de vue, elle commence à ressembler à ce qu’on pensait de la biologie, imprévisible, aléatoire, donc quand on y regarde de plus près, on peut voir ça comme l’intégration ou la synthèse de ces deux concepts, plutôt que comme deux éléments séparés.

PIERRE-OLIVIER : Une des idées qui m’a surpris le plus, c’est sans doute l’année dernière, le chercheur chinois qui a donné naissance à ce qu’on appelle les « jumelles CRISPR », qui est une technologie, une biotechnologie qui permet de modifier l’ADN in vitro, et on peut commencer à s’imaginer, au cours des dix à quinze prochaines années, où est-ce que cette technologie-là pourrait nous mener, dans une optique où on pourrait peut-être éliminer certaines maladies et immuniser le corps humain au points d’une génération complète contre certaines maladies. Et aussi c’est la possibilité de personnaliser l’humain dans le futur.

AVALYNE : L’une des choses les plus étranges que j’ai mis du temps à vraiment comprendre, c’est la biologie synthétique, le café moléculaire, par exemple, quand j’ai fait des recherches sur une entreprise à Seattle qui fait du café sans grains. Ils abordent ça du point de vue environnemental, et il y a beaucoup de mouvement dans le bionumérique autour de la durabilité, et ça va de la viande imprimée en 3D, imprimer une poitrine de poulet dans votre cuisine au lieu de l’acheter à la ferme et faire du café synthétique, sans les grains.

MARCUS : Je crois qu’une des choses les plus bizarres était un robot dans lequel on avait implanté des cellules cérébrales. Il n’est pas conscient au même sens que nous, mais il semble prendre des décisions, le cerveau semble décider où envoyer le robot. Je trouve ça vraiment bizarre.

ERIC : Au cours de nos recherches prospectives, nous avons vu émerger l’intégration de nos technologies informatiques en réseau et des systèmes biologiques qui ont évolué sur Terre, et l’apparition d’une troisième entité, quelque chose de nouveau. C’est ça que nous voulons explorer par la prospective.

AVALYNE : Ça pourrait chambouler beaucoup de choses, avec les levures et les bactéries, on peut tout faire à partir de levures. On commence à voir que les gens peuvent fabriquer des choses à la maison qui auraient pris tout un laboratoire de recherche, et c’est ce qui est si intéressant dans le bionumérique, c’est qu’il est accessible.

KRISTEL : Nous pensons que la convergence entre les systèmes biologiques et les systèmes numériques en est au même point où étaient les technologies numériques dans les années 80. Donc, cette convergence bionumérique ouvre la voie à des façons entièrement nouvelles de nous changer, nos corps, notre esprit, nos comportements. Cela nous permet aussi de changer nos écosystèmes, de créer de nouveaux organismes. Nous pourrons aussi d’une façon différente, percevoir, stocker, traiter et transmettre des informations. Nous pourrons aussi restructurer différemment les chaînes d’approvisionnement et la production.

Nous pensons que dans les années qui viennent, nous pourrons avoir une intégration de cette technologie bionumérique, tout comme le sont maintenant les technologies numériques. Nous pouvons aussi être amenés à nous poser des questions sur ce que ça veut dire d’être humain, ce qui est naturel. Par conséquent, vu l’ampleur des implications de la convergence bionumérique, nous devons commencer à réfléchir à ce qui est possible, à ce qu’on veut voir dans le futur pour que nous puissions construire un futur bionumérique que nous voulons.

ERIC : Ce que j’espère pouvoir attendre de cette étude, c’est de faire ressortir une image assez précise d’avenirs plausibles de la convergence bionumérique pour le Canada. J’ai beaucoup d’espoir pour la prochaine génération et ce qu’elle pourra accomplir à mesure que la convergence bionumérique évoluera.

Pendant les décennies des technologies de l’information, nous nous sommes surtout concentrés sur l’économie du savoir. Si on veut éviter de se tromper à l’époque du bionumérique, dans les choix que nous ferons, les connaissances ne suffiront pas. Il faudra aussi de la sagesse.

KRISTEL : La convergence bionumérique aura des impacts sur différentes industries et sur plein de domaines politiques. Pour un analyste, il serait intéressant de commencer à regarder ce qui pourrait arriver. En quoi est-ce que ça impacte en fait mon domaine de responsabilité ? Est ce qu’il y a des changements dans le futur pour lesquels il faut que je me prépare ? Est ce qu’il y a besoin de nouvelles lois qui doivent être créées ? Est ce qu’il y a besoin de changements dans les stratégies politiques afin d’arriver à nos buts ? Est ce qu’il y a des investissements à considérer pour pouvoir saisir les opportunités qui viennent de cette convergence ?

Ou est ce qu’il y a des conversations avec la société qu’on doit mener pour savoir ce que la société veut et comment on peut se préparer justement pour saisir les opportunités sans tomber dans les conséquences inattendues d’une convergence pareille.

La physique quantique peut provoquer des mutations dans notre ADN

Il est difficile de conceptualiser le comportement quantique curieux des particules subatomiques, qui sont souvent trop minuscules, fugaces et contre-intuitives pour être conceptualisées à une échelle tangible. Mais les nouvelles recherches vont à l’encontre de cette tendance, en suggérant qu’un phénomène quantique inhabituel pourrait avoir un impact sérieux sur les structures biologiques, provoquant même des mutations ponctuelles dans les molécules d’ADN.

Le résultat est que les liaisons hydrogène qui relient ensemble deux brins d’ADN en spirale sont primordiales pour un processus quantique inhabituel appelé “tunnelisation de protons”, selon une recherche publiée par des scientifiques de l’Université du Surrey le mois dernier dans la revue Physical Chemistry Chemical Physics.

La tunnellisation de protons se produit lorsqu’un proton semble disparaître et réapparaître ailleurs, de l’autre côté d’une barrière physique ou énergétique. Les protons sont massifs par rapport aux autres particules subatomiques qui existent à l’échelle quantique, il n’est donc pas aussi courant de voir un tunnel à protons par rapport à quelque chose comme un tunnel à électrons. Mais c’est possible, et lorsque cela se produit à l’intérieur d’une molécule d’ADN, cela peut essentiellement déplacer les atomes au mauvais endroit, entraînant une mutation du code génétique.

“Beaucoup soupçonnent depuis longtemps que le monde quantique joue un rôle dans la vie telle que nous la connaissons”, a déclaré l’auteur principal et chimiste du Surrey, Marco Sacchi, dans un communiqué de presse. “Bien que l’idée que quelque chose puisse être présent à deux endroits en même temps puisse être absurde pour beaucoup d’entre nous, cela arrive tout le temps dans le monde quantique, et notre étude confirme que le tunnelage quantique se produit également dans l’ADN à température ambiante”.

Les chances qu’une de ces mutations quantiques entraîne des problèmes médicaux à terme sont rares – l’article note que les molécules d’ADN sont capables de se réparer assez rapidement. Mais comme pour toute autre mutation, il est possible que ces mutations s’installent et se propagent par le biais du processus de réplication de l’ADN, ce qui pourrait causer des problèmes ou même augmenter le risque de cancer.

“Il nous reste un long et passionnant chemin à parcourir pour comprendre comment les processus biologiques fonctionnent au niveau subatomique”, a déclaré Louie Slocombe, coauteur de l’étude et biologiste quantique, dans le communiqué, “mais notre étude – et d’innombrables autres au cours des dernières années – ont confirmé que la mécanique quantique est en jeu”.

Phys.org

Les scientifiques chinois déclarent avoir trouvé une alternative plus sûre à l’outil CRISPR

Des chercheurs de l’Université de Pékin, en Chine, ont mis au point une nouvelle technologie d’édition des génomes. Ils pensent que cette technologie est prometteuse comme solution de remplacement de CRISPR pour lutter contre les maladies humaines.

Selon un article publié lundi dans la revue Nature Biotechnology, cette nouvelle technologie, LEAPER, qui signifie “leveraging endogenous ADAR for programmable editing of RNA”, fonctionne de manière similaire à CRISPR-Cas13, ciblant les molécules d’ARN par opposition à l’ADN comme le célèbre CRISPR-Cas9.

Mais alors que CRISPR-Cas13 s’appuie à la fois sur un guide ARN et sur l’enzyme Cas13 pour effectuer ses modifications sur l’ARN, le système LEAPER n’a besoin que d’un seul composant, appelé ADAR-recruiting RNAs (arRNAs). Cela rend le système “plus facilement livrable et moins susceptible d’entraîner des réponses immunitaires cellulaires indésirables”, ont déclaré les chercheurs au média chinois Caixin.

En ce qui concerne les utilisations potentielles de leur alternative CRISPR, le chercheur de Pékin Zhou Zhuo a déclaré à Caixin qu'”il existe des perspectives claires d’utilisation de cette technologie dans le traitement des maladies”.

En fait, lors de tests de cellules prélevées sur des personnes atteintes du syndrome de Hurler, une maladie génétique débilitante, LEAPER a pu corriger “des quantités suffisantes” de l’ARN muté des cellules, a déclaré à Caixin Ernst Wolvetang, généticien de l’Université du Queensland, qui n’a pas participé à cette recherche.

Cependant, la recherche n’en est encore qu’à ses débuts et ne fait que commencer à faire des essais sur des animaux – ce qui signifie que nous ne saurons pas avant un certain temps si LEAPER détrônera CRISPR en tant que technologie prééminente d’édition génétique.

The Global Times

* Adenosine Deaminase Acting on RNA (ADAR)

Cinq couples acceptent de recourir à CRISPR pour éviter la surdité de leurs bébés

Les avantages de l’audition valent-ils les risques de la modification génétique ?

Denis Rebrikov veut utiliser CRISPR pour créer plus de bébés génétiquement modifiés – et il sait déjà qui sont leurs parents.

En juin, le biologiste russe a annoncé à Nature qu’il envisageait de modifier génétiquement des embryons humains, puis de les mener à terme. Jusqu’à présent, une seule personne – le scientifique chinois He Jiankui – a déjà produit des bébés modifiés, en affirmant que les modifications empêcheraient les bébés d’hériter du VIH de leur père.

Un biologiste russe va créer d’autres bébés modifiés avec CRISPR

Début juillet, Rebrikov a déclaré à New Scientist qu’il avait cinq couples russes désireux de le laisser modifier les gènes de leurs embryons pour une raison différente et socialement chargée : empêcher la progéniture d’hériter de la surdité de leurs parents.

Rebrikov a déclaré au New Scientist que chaque parent intéressé par son étude est sourd à cause de mutations de son gène GJB2. Lorsque deux personnes atteintes de ces mutations se reproduisent, l’enfant est assuré d’être sourd à la naissance.

En utilisant CRISPR pour modifier une copie du gène GJB2 dans un embryon fécondé, Rebrikov pense qu’il sera en mesure d’exaucer le souhait des parents d’avoir un enfant biologique qui ne soit pas sourd.

Si Rebrikov veut utiliser CRISPR sur des embryons humains – et il semble que personne en dehors de la Russie ne puisse faire quoi que ce soit pour l’arrêter – cette utilisation de CRISPR est potentiellement plus justifiable que les tentatives inutiles de He Jiankui pour prévenir le VIH.

“C’est clair et compréhensible pour les gens ordinaires”, a-t-il déclaré au New Scientist. “Chaque nouveau bébé serait sourd sans l’édition de la mutation génique.”

Contrairement à He Jiankui, qui a agi sans consulter au préalable les autorités chinoises, Rebrikov envisage de contacter le gouvernement russe dans quelques semaines pour demander la permission avant de commencer son expérience controversée CRISPR.

L’utilisation de CRISPR par Rebrikov serait peut-être plus justifiable sur le plan médical que celle de Jiankui, mais cela ne signifie pas pour autant qu’elle n’est toujours pas très controversée.

Pour commencer, certains ne pensent pas que la surdité soit une condition qui doit être traitée. Ils soutiennent que la surdité est une culture qui devrait être adoptée et non un handicap. En fait, certains voient les chirurgies ou les appareils médicaux conçus pour donner aux personnes sourdes la capacité d’entendre comme une forme de “génocide” contre un groupe minoritaire.

Beaucoup de ces personnes – ainsi que d’autres dont la surdité ne peut être traitée par des interventions médicales – mènent une vie remplie et saine sans être capables d’entendre. Et à ce stade précoce de la recherche CRISPR, certains scientifiques pensent que nous ne devrions pas prendre le risque d’expérimenter la technologie sur les humains à moins que cela ne soit nécessaire pour sauver leur vie.

“Les premiers essais sur l’homme devraient commencer avec des embryons ou des nourrissons n’ayant rien à perdre, avec des conditions mortelles», a déclaré le bio-éthicien de l’Université d’Oxford, Julian Savulescu, à New Scientist. “Vous ne devriez pas commencer avec un embryon susceptible de mener une vie normale.”

New Scientist

Un biologiste russe va créer d’autres bébés modifiés avec CRISPR

Lorsque le chercheur chinois He Jiankui a annoncé qu’il avait édité des embryons humains et les avait menés à terme, donnant ainsi naissance aux premiers humains dotées de gènes modifiés, les scientifiques du monde entier ont rapidement condamné son expérience controversée.

Mais le biologiste russe Denis Rebrikov était apparemment inspiré par le travail de He. Plus tôt en juin, il avait confié à Nature qu’il espérait créer ses propres bébés CRISPR, probablement avant la fin de 2019. Les dirigeants de la communauté scientifique mondiale affirment désormais qu’ils ne peuvent rien faire pour l’arrêter.

Naissance imminente d’un troisième bébé génétiquement modifié

Malgré le soutien de la puissante Organisation des Nations Unies, le comité consultatif de l’Organisation mondiale de la santé sur l’édition du génome humain est impuissant pour stopper Rebrikov, a déclaré Margaret Hamburg, co-présidente du comité.

« Je ne sais pas où nous trouverons les moyens de faire une partie de ce qui doit être fait en fin de compte pour réagir dans de telles situations », a-t-elle dit, notant plus tard que Rebrikov « a été très explicite, mais que nous ne sommes pas en mesure de faire appliquer ou même d’évaluer la nature du travail et la façon dont il va progresser ».

Victor Dzau, président de l’Académie nationale de médecine américaine, a également fait part de ses préoccupations concernant le projet de Rebrikov de créer des bébés CRISPR.

“C’est fou, et cela m’inquiète énormément”, a-t-il déclaré, “mais je ne sais pas ce que nous pouvons faire pour l’arrêter.” “Chaque pays a sa propre souveraineté”, a-t-il ajouté, ce qui signifie qu’il appartient maintenant à la Russie de mettre un terme ou non à l’expérience controversée.

STAT

Les Etats-Unis ont officiellement commencé à utiliser CRISPR sur les humains

Naissance imminente d’un troisième bébé génétiquement modifié

Quand le scientifique chinois He Jiankui, aujourd’hui célèbre pour avoir amené dans le monde les bébés génétiquement modifiés, la communauté scientifique et les gouvernements du monde entier ont condamné ses recherches et insisté pour que des mesures de protection plus strictes soient mises en place afin que cela ne se reproduise plus.

Aujourd’hui, CNBC rapporte que le prochain bébé génétiquement modifié doit naître cet été – et les scientifiques s’efforcent de comprendre ce que cela signifie pour l’humanité et la science.

En janvier, William Hurlbut, bioéthicien à Stanford, avait prévenu le monde qu’un troisième bébé génétiquement modifié était probablement attendu pour juin.

Une deuxième grossesse CRISPR est peut-être déjà en cours

S’exprimant lors d’une conférence parrainée par CNBC, Hurlbut a suggéré que les scientifiques doivent accepter le fait que la boîte de Pandore de l’homme génétiquement modifié a été ouverte.

“En tant qu’espèce, nous devons faire face à cette situation”, a déclaré M. Hurlbut. “Pour la première fois dans l’histoire de la vie, nous pouvons influencer l’avenir de notre évolution.”

Même si cela est fait avec des intentions bienveillantes, telles que la façon dont il prétend avoir immunisé les bébés contre le VIH, le piratage génétique d’un embryon humain soulève des dilemmes éthiques autour de l’idée de consentement médical.

“Comment s’assurer que l’on peut aligner la personne qui consent et celle qui prend le risque”, a demandé Paul Dabrowski, PDG de Synthego, une société d’ingénierie du génome, lors de la conférence.

Genetics, CRISPR and Medical Ethics at the CNBC Healthy Returns conference in New York on May 21, 2019.

CNBC

La guerre post-humaniste 2 : Géopolitique du génome

La prolifération de nouveaux éléments nous pousse à prolonger notre dossier du numéro précédent, à propos des initiatives dans la modification génétique à l’international.

Actualités touchant le génome

Les CAR-T cells permettent de traiter certains cancers du sang en modifiant génétiquement les cellules du patient. Le CAR (Chimeric Antigen Receptor) est un récepteur antigénique chimérique que l’on intègre par modification génétique aux cellules immunitaires du patient (les lymphocytes T) afin qu’elles identifient et attaquent les cellules tumorales. Ce ne serait ni plus ni moins « la découverte de l’année », selon la puissante association américaine de cancérologie ASCO. Selon les premiers résultats, le taux de rémission est de 83 % pour les patients traités au CAR-T cells contre environ 15 % pour les autres enfants et adultes jusqu’à 25 ans atteints de leucémie aiguë réfractaire. Dans le cas de patients atteints d’un lymphome diffus à grandes cellules B réfractaire, une rémission complète ne toucherait que 5 à 10 % des individus traités avec une chimiothérapie conventionnelle contre 40 % de rémission complète 15 mois après le traitement par CAR-T. Les deux hôpitaux parisiens Saint-Louis et Robert-Debré seront les premiers labellisés « centres experts pour le traitement par cellules CAR-T » en Europe. Toujours en France, l’Agence nationale de sécurité du médicament et des produits de santé (ANSM) a délivré aux laboratoires américains, Gilead Sciences et Kite (sa filiale axée sur la thérapie cellulaire autologue T), et au groupe pharmaceutique suisse Novartis des autorisations temporaires d’utilisation (ATU) de ces traitements, nécessaires avant une possible autorisation de mise sur le marché (AMM).

Le laboratoire pharmaceutique Glaxosmithkline ou GSK (l’un des plus gros au monde) a annoncé le rachat des données génétiques de 5 millions de clients au spécialiste US de l’analyse génétique 23andMe (un des plus grands fabricants de tests ADN à domicile) pour un coût de 300 M$. Ces clients ont transmis leur salive à la société pour en savoir plus sur leur ADN, leur ascendance et ainsi obtenir des rapports de santé personnalisés. GSK a racheté toutes ces informations pour leurs études pharmaceutiques. Plus de 5 millions de personnes ont envoyé un échantillon de salive en échange d’informations, notamment sur leur risque de développer un cancer du sein.

Avec la manipulation génétique, une équipe de scientifiques de l’Université de Californie à Los Angeles (UCLA) a réussi à transférer la mémoire d’un escargot de mer à un autre, le 14 mai dernier. L’expérience, décrite dans la revue scientifique eNeuro, consiste à stimuler la mémoire des escargots grâce à une sensibilisation par faible choc électrique sur la queue. En provoquant leur réflexe défensif de contraction de la queue, les escargots « entraînés » après 24 h, contractent ce membre pendant cinquante secondes contre une seconde pour les « non entraînés ». L’ARN (acide nucléique essentiel dans le transport du message génétique et la synthèse des protéines) du système nerveux des escargots entraînés est ensuite extrait pour l’injecter dans les spécimens non entraînés. Vingt-quatre heures plus tard, ces derniers avaient le même réflexe de défense que les escargots ayant subi des chocs électriques. À terme, les chercheurs espèrent transférer la mémoire d’un humain à un autre. Une expérience qui fait penser à celle réalisée fin 2017, où le collectif OpenWorms avait entrepris d’analyser minutieusement le cerveau du ver Caenorhabditis elegans pour le reproduire virtuellement et le télécharger dans un robot Lego. Résultat : sans aucune programmation, le cerveau virtuel a pris le contrôle du robot, qui s’est comporté comme l’animal et a même réagi à la simulation des capteurs de nourriture destinés au ver.

La guerre post-humaniste

Les ciseaux moléculaires CRISPR et la course à la modification génétique

Actuellement, un nouveau projet international est en cours pour réécrire entièrement le génome humain. Le séquençage du génome, qui consiste à identifier tous les gènes de notre espèce, avait déjà pris 13 années. L’objectif de ce nouveau programme nommé Recode est de créer un génome 100 % synthétique. Si l’objectif reste généralement thérapeutique dans un premier temps, se posent toujours des questions éthiques, à différents niveaux selon les espaces civilisationnels [cf. Géopolitique Profonde n° 6].

Réécrire un génome, c’est une sorte de formatage ou de remise à zéro des gènes humains. Le qualificatif de « modifié génétiquement » se réfère à des plantes et des animaux qui ont été modifiés d’une manière qui ne serait pas apparue naturellement à travers l’évolution, comme le transfert d’un gène d’une espèce à une autre pour doter l’organisme d’un nouveau caractère (résistance aux parasites ou une tolérance accrue à la sécheresse). L’entreprise biopharmaceutique Cellectis a par exemple créé son outil d’édition de génome appelé TALEN en association avec l’Institut Wyss de Harvard pour couper l’ADN, ôter, coller, modifier toutes les mutations, tous les défauts ou toutes les particularités acquises au cours de milliers d’années d’évolution.

Pour l’exemple, l’agence militaire étasunienne DARPA (Defense Advanced Research Projects Agency) et le ô grand milliardaire philanthrope Bill Gates auraient investi 100 M$ dans le « forçage génétique ». Cette technique de manipulation génétique a pour but de modifier un gène pour qu’il soit ensuite rapidement transmissible à toute une espèce animale ou végétale. Ceci pourrait, par exemple, limiter la capacité de reproduction d’une espèce, la rendre plus sensible ou insensible à une maladie ou à un produit chimique. Des expérimentations pourraient se dérouler en Australie, en Nouvelle-Zélande, au Burkina Faso, en Ouganda, au Mali et au Ghana. La Fondation Bill & Melinda Gates aurait au passage également consacré 1,6 M$ en lobbying via la société Emerging A.G pour promouvoir cette expérimentation.

Aujourd’hui, ce sont les technologies d’édition de gènes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) qui sont les plus médiatisées. Elles permettent d’introduire de nouveaux caractères en réécrivant directement le code génétique de la cible (végétaux, animaux, humains). Dans l’agriculture, cela présente l’avantage d’être plus rapide et plus précis que la culture conventionnelle (sélection des plantes), tout en étant moins controversé que les techniques OGM. En 2012, l’outil d’édition génique CRISPR-Cas9 émerge de la collaboration des chercheuses française Emmanuelle Charpentier et américaine Jennifer Doudna avec la publication de leurs recherches à l’Université de Californie à Berkeley.

CRISPR se traduit littéralement par « Courtes répétitions palindromiques groupées et régulièrement espacées ». Il s’agit de famille de séquences répétées dans l’ADN. Le deuxième terme Cas9, quant à lui, renvoie à l’endonucléase, une enzyme capable de couper les deux brins de l’hélice d’ADN. En combinant les deux, on obtient les « ciseaux moléculaires » CRISPR-Cas9 qui permettent d’éditer le génome, de couper l’ADN, d’inactiver des gènes ou d’en introduire. Ses applications peuvent être plurielles dans la recherche fondamentale, la médecine et la biotechnologie. La simplicité de cette technique et son bas coût peuvent amener à des dérives multiples, dans la manipulation d’embryons par exemple.

Contrairement aux deux méthodes de coupures d’ADN 1) des protéines TALEN (Transcription activator-like effector nucleases – nucléases effectrices de type activateur de transcription) et 2) des nucléases à doigt de zinc — le ciblage de l’ADN par le procédé CRISPR-Cas9 est plus direct et ne requiert pas de modification de la protéine, mais seulement de l’ARN guide. De nombreuses sociétés investissent dans la recherche sur ce nouvel outil d’altération génétique.

Le US Patent and Trademark Office (USPTO – Bureau américain des brevets et des marques de commerce) a accordé deux nouveaux brevets CRISPR à l’Université de Californie à Berkeley. En 2017, l’instance a accordé à Feng Zhang et à son équipe du Broad Institute of Harvard et du MIT un autre brevet convoité pour utiliser l’outil CRISPR-Cas9 dans l’édition d’ADN de mammifères : il y a une bataille juridique pour déterminer lequel des scientifiques devient propriétaire, car l’équipe de Jennifer Doudna a fait appel de cette décision. Ce 10 septembre 2018, la Cour d’appel des États-Unis a confirmé cette dernière décision du USPTO. Le brevet donne à un inventeur la propriété légale de son invention ou découverte. Il est le seul à pouvoir donner l’autorisation à quiconque voulant utiliser son idée et collecter l’argent de l’octroi de la licence.

Deux sociétés américaines, Indoor Technologies et Felix Pets, se font concurrence pour modifier génétiquement des embryons de chats afin de les rendre hypoallergéniques, c’est-à-dire qu’il ne présenteraient plus le gène qui provoque des allergies aux humains. Des brevets ont été déposés en 2016 pour utiliser le Crispr-Cas9 pour couper le gène bien identifié qui provoque l’allergie, la protéine Fel d 1.

L’américain Sangamo Therapeutics a testé un procédé d’édition du génome in vivo destiné à lutter contre le rare syndrome de Hunter (maladie génétique lysosomale) sur quatre personnes. Les premiers résultats non réussis de son essai clinique ont été publiés. Les médecins ont utilisé les nucléases à doigt de zinc en tant que ciseau moléculaire et non CRISPR.

L’utilisation de CRISPR sur l’Homme est plus compliquée à tester en raison des réflexions éthiques que le procédé suscite. Les premiers essais cliniques utilisant CRISPR sur l’être humain ont débuté rapidement, avec un recul encore probablement insuffisant. En 2017, des scientifiques américains de l’Oregon Health & Science University ont franchi un cap en déclarant utiliser cette technologie pour éditer des embryons humains après deux ans d’attente pour l’autorisation éthique de leurs expériences. L’hôpital de l’Université de Pennsylvanie et l’agence US de régulation Food and Drug Administration (FDA) ont mis tout autant de temps à obtenir le feu vert pour tester une thérapie basée sur CRISPR sur 18 patients cancéreux. La société CRISPR Therapeutics de Cambridge (Massachusetts) aimerait aussi démarrer des essais cliniques de phase I en utilisant CRISPR pour traiter des patients atteints du trouble bêta-thalassémies (maladie génétique de l’hémoglobine). L’américain Editas Medicine doit également lancer sous peu un essai clinique utilisant la technique CRISPR pour traiter une forme rare de cécité.

Au vu des ralentissements prudents de la FDA à propos des essais cliniques sur l’Homme sur le sol américain depuis mai 2018, un premier essai clinique utilisant CRISPR-Cas9 chez l’homme a été lancé à l’hôpital de Ratisbonne (Allemagne). Deux sociétés US, Vertex Pharmaceuticals et CRISPR Therapeutics, se sont associées pour développer le traitement expérimental CTX001. L’essai clinique (phase 1/2) compte douze adultes atteints de bêta-thalassémie (maladie génétique de l’hémoglobine) pour prélèvement de leurs cellules sanguines, traitement in vitro et réinjection. C’est la course aux essais cliniques.

Chez les Britanniques, l’organisme de bienfaisance indépendant basé à Londres Nuffield Council on Bioethics (NCB) a pondu un rapport sur les problèmes sociaux et éthiques liés à l’édition et à la reproduction du génome humain. Le bienfaiteur autoproclamé a pour habitude d’analyser les questions éthiques en biologie et en médecine. Selon sa récente étude, l’édition d’embryons, de spermatozoïdes et des ovules humains est « moralement acceptable» sous la condition que « la modification ne compromette pas le bien-être de l’individu en devenir (la personne issue de l’embryon qui aura subi une édition génétique) ou que cela n’augmente pas le désavantage, la discrimination ou la division dans la société ».

Au Japon, les autorités étudient une autorisation prochaine de la recherche fondamentale sur les modifications génétiques des embryons humains (avec l’outil CRISPR-Cas9), dans le cadre de la recherche sur les traitements de procréation assistée. La validation de la directive est prévue d’ici avril 2019 après consultation de la population. Les embryons altérés seront ceux issus de fécondation in vitro non utilisés. Il sera interdit de les réimplanter dans l’utérus de femmes après modification. Nous voilà rassurés.

La Chine lance également des programmes de thérapie génique d’envergure internationale. La belliciste banque Goldman Sachs juge que « la Chine bat les États-Unis dans la course aux armements géniques ». Dès 2013, les scientifiques chinois ont utilisé CRISPR sur l’ADN humain, et en avril 2015, ils ont modifié directement sur des embryons un gène responsable d’une maladie du sang. Les embryons non viables n’ont pas survécu, mais la polémique a marqué les esprits. Les scientifiques du pays ont modifié génétiquement les cellules d’au moins 86 patients atteints du cancer et du VIH dans le pays en utilisant la technologie CRISPR-Cas9.

La course scientifique entre les deux superpuissances asiatique et nord-américaine est tellement intense qu’elle est qualifiée de « Spoutnik 2.0 » en référence à la concurrence spatiale opposant l’URSS et les USA durant la Guerre froide. L’École de Guerre économique a relevé qu’une équipe chinoise a fait naître des chiens de race beagles en supprimant le gène de la myostatine (protéine qui inhibe la croissance musculaire). En conséquence, les animaux sont nés avec une masse musculaire doublée par rapport à celle habituellement admise. On imagine très bien les perspectives sur l’Homme.

Contrebalançant l’enthousiasme entourant toutes ces nouvelles techniques, des scientifiques du Centre Wellcome Sanger ont récemment établi dans la revue Nature Biotechnology que l’édition de gènes CRISPR-Cas9 produit des altérations voire des suppressions dangereuses d’ADN dans les cellules de souris et d’homme. D’autres études récentes publiées dans Nature Medicine montrent que la modification des génomes avec CRISPR-Cas9 pourrait augmenter le risque que les cellules altérées déclenchent un cancer (des ovaires, du côlon, du rectum ou de l’œsophage). Des chercheurs de l’Institut suédois Karolinska et, séparément, de Novartis ont constaté que les cellules dont les génomes sont édités avec succès par CRISPR-Cas9 ont le potentiel d’ensemencer des tumeurs à l’intérieur d’un patient. Les deux études se concentrent sur le gène p53 qui joue un rôle majeur dans la prévention des tumeurs en détruisant des cellules avec de l’ADN endommagé. Selon des recherches antérieures, la plupart des tumeurs humaines ne peuvent tout simplement pas se former si la cellule p53 fonctionne correctement. Si elle est dysfonctionnelle, le risque de cancers pourrait être plus élevé. Malheureusement, p53 est aussi une sorte de défense naturelle contre les modifications du génome faites par CRISPR-Cas9. Lorsque les chercheurs utilisent ces ciseaux moléculaires pour couper et remplacer un peu d’ADN, p53 passe à l’action, provoquant l’autodestruction des cellules éditées. Cela rend l’édition CRISPR essentiellement théorique, ce qui pourrait expliquer pourquoi la méthode ne serait pas si efficace.

La version CRISPR-Cas12 serait encore plus précise et spécifique que le Cas9, qui ne reconnaît que 2 ou 3 nucléotides pour se fixer solidement à l’ADN. CRISPR-Cas12 « agit plus comme un velcro, en multipliant les liaisons faibles. Tous les nucléotides de la séquence génétique doivent être reconnus pour qu’une fixation solide se fasse ». Une utilisation généralisée de ce procédé devrait être prochainement mise en place.

Franck Pengam
Extrait de Géopolitique Profonde n°7 – Septembre-Octobre 2018

La guerre post-humaniste

La guerre post-humaniste : quel état initiera la modification génétique de l’être humain ?

En cette époque charnière, la modification de l’environnement par l’Homme a pris une forme inédite avec l’avancée de l’ingénierie génétique. De l’altération des gènes des plantes, nous sommes désormais passés à celles des animaux et des humains. L’amélioration de l’Homme, du transhumanisme à l’eugénisme en passant par le clonage, semble inéluctable dans les sociétés les plus avancées technologiquement, comme le montre les faits qui vont suivre.

L’animal génétiquement modifié

Quelques récentes avancées génétiques sur les animaux méritent d’être relevées. Après la fameuse brebis Dolly, premier mammifère cloné de l’histoire en 1996, le clonage de chiens par l’entreprise sud-coréenne de biotechnologies Sooam Biotech confirme la tendance en 2014. Récemment, un laboratoire chinois a créé des clones de singe fin 2017 — début 2018 avec la « méthode Dolly ». Il s’agit d’un transfert nucléaire de cellules somatiques permettant théoriquement la création d’un nombre infini de clones, contrairement au procédé de division embryonnaire (qui se produit naturellement chez les jumeaux) limitant le nombre de clones à quatre. Aujourd’hui, 22 espèces animales (chiens, chats, porcs…) ont été clonées avec cette méthode Dolly.

Après avoir investi en 2017 dans la viande artificielle [cf. GP n° 5], le milliardaire américain William Henry Gates III, dit Bill Gates, annonce avoir consacré plus de 40 M$ dans le partenariat public-privé écossais GALVmed (l’Alliance mondiale pour les médicaments destinés au bétail). Elle étudie la génétique et la vaccination du bétail, pour créer une race de « super vaches » destinée à résister au réchauffement climatique. Des généticiens de l’Institut des sciences agroalimentaires de l’Université de Floride avaient déjà déclaré le 23 juin 2017 travailler sur une espèce de vaches génétiquement modifiées. L’agence militaire états-unienne DARPA (Defense Advanced Research Projects Agency) et le grand philanthrope Gates auraient également investi 100 M$ dans le « forçage génétique ». Cette technique de manipulation génétique a pour but de modifier un gène pour qu’il soit ensuite rapidement transmissible à toute une espèce animale ou végétale. Ceci pourrait, par exemple, limiter la capacité de reproduction d’une espèce, la rendre plus sensible ou insensible à une maladie ou à un produit chimique. Des expérimentations pourraient se dérouler en Australie, en Nouvelle-Zélande, au Burkina Faso, en Ouganda, au Mali et au Ghana. La Fondation Bill & Melinda Gates aurait également consacré 1,6 M$ en lobbying via la société Emerging A.G pour promouvoir le phénomène.

Plus grand meurtrier de la planète à cause des virus et parasites qu’il transmet à l’Homme, le moustique est responsable d’un million de décès tous les ans. En réponse, Oxitec, une société britannique créée en 2002 issue de l’Université d’Oxford, conçoit des moustiques mâles stériles génétiquement modifiés par modification directe du génome. Vu que la femelle ne s’accouple qu’une fois, l’absence de descendance est censée faire décroître la population de moustiques. En 2010, un premier lâcher a eu lieu aux îles Caïman. Il a été financé par la Fondation Bill & Melinda Gates, décidément toujours à la pointe de l’altération environnementale (géo-ingénierie, OGM…). D’autres tests ont suivi en Malaisie, au Brésil, au Panama et en Floride. Le Burkina Faso servira de cobaye pour la suite de ces expériences inédites. Des œufs de moustiques génétiquement modifiés ont été importés avec l’accord de l’Agence Nationale de Biosécurité au Burkina Faso pour lutter contre le paludisme (malaria) dans le cadre du projet Target Malaria. Un élevage est en cours au laboratoire de l’Institut de Recherche en Sciences de la Santé (IRSS) à Bobo Dioulasso pour atteindre 10 000 moustiques mâles stériles génétiquement modifiés. Un lâcher dans la nature est programmé dans les mois à venir. Une autre méthode non-OGM, déjà testée par la Polynésie, consiste à transmettre la bactérie wolbachia au moustique pour bloquer sa reproduction. La Nouvelle-Calédonie compte s’orienter vers cette solution.

Le MIT Technology Review rapporte que des neuroscientifiques de l’Université de Yale ont réactivé les cerveaux de 100 à 200 cochons morts, quelques heures après leur décapitation dans un abattoir local. Les milliards de cellules de ces cerveaux de cochons décédés ont affiché une activité normale pendant 36 heures d’affilée où les chercheurs ont pu rétablir la circulation sanguine dans les organes. Ce système nommé BrainEx est constitué de pompes, de chauffage et de sang artificiel connecté à un cerveau en boucle fermée.

Un ovaire artificiel imprimé en 3D a été implanté chez des souris stériles, qui ont finalement pu donner naissance à des bébés souris en bonne santé. L’ovaire en question permet la maturation des ovocytes in vitro, mais également in vivo. Les scientifiques de l’Université Northwestern (Chicago) ont expliqué leur méthode dans la revue Nature Communications. Aucun problème n’a été relevé au niveau de l’allaitement et de la reproduction.

D’autres savants de l’Université de Maastricht ont réussi à créer un embryon de souris à un stade de développement très précoce, sans gamète (ni spermatozoïde, ni ovule), à partir de deux cellules souches embryonnaires différentes. Les cellules restaient désorganisées, ce qui a empêché la maturation de l’embryon implanté. Les conclusions de la recherche laissent penser que la création d’un embryon de souris viable pourrait intervenir d’ici trois années. À terme, il s’agit d’utiliser ces embryons sans gamète pour étudier l’infertilité et tester des médicaments.

L’écrevisse marbrée (procambarus virginalnorthis) est une espèce invasive, hybride génétiquement et capable de se reproduire sans mâle. Elle est apparue pour la première fois en 1995 dans un aquarium allemand, mais s’est échappée de son milieu confiné et a réussi à se reproduire dans différentes régions du monde. Dès 2003, les experts ont étonnamment constaté que les écrevisses marbrées étaient capables de se cloner via la parthénogenèse (mode de reproduction asexué). En revanche, il est impossible de savoir comment la première écrevisse marbrée est devenue capable de se multiplier par cette méthode. Résultat en 20 ans : des clones se sont développés en Europe et en Afrique, bouleversant les écosystèmes et les espèces locales. L’espèce est interdite dans l’UE et dans certaines régions des États-Unis, mais constitue une ressource alimentaire à Madagascar.

La biodiversité génétique de l’océan (du microbe à la baleine) est une véritable mine d’informations sur le potentiel génétique. La moitié des gènes des créatures marines appartiennent à une seule société, l’allemand BASF, la plus grande entreprise chimique du monde. La grande majorité des données génétiques sont d’ailleurs détenues par le secteur privé et 98 % des détenteurs de brevets de la vie marine sont basés dans 10 pays. Breveter une séquence génétique particulière provenant d’un organisme marin signifie donner le droit exclusif de faire des recherches sur celle-ci et de produire des produits connexes. Mais, les détenteurs de brevets ont un monopole limité sur leur création et peuvent accorder des droits complets ou partiels à d’autres. Le brevetage soumet également les compagnies au partage de leurs recherches.

L’Homme génétiquement modifié

Un siècle après « Le Meilleur des mondes » (1932), célèbre roman dystopique d’Aldous Huxley, la procréation externe et la modification de l’embryon de l’être humain dont il est question dans le scénario n’ont jamais été aussi proches.

Actuellement, les pays autorisant des modifications génétiques d’embryons humains à des fins de recherche se limitent au Royaume-Uni, à la Suède, au Japon, aux États-Unis et à la Chine. Ce dernier pays étant le plus transgressif au monde ; il a été le premier à effectuer des modifications sur l’embryon humain et a lancé en 2013 un programme de séquençage de l’ADN des surdoués pour déterminer les variables favorisant leur intelligence (L’Express, 07/02/17).

De la crypto-monnaie en échange de vos données génétiques en utilisant une blockchain !

Le séquençage de l’ADN est devenu une pratique courante dans les laboratoires. Des tests ADN de dépistage néonatal permettent déjà de rechercher et détecter plus de 193 maladies dans les gènes d’un nouveau-né. Le professeur Georges Church, un des pères du séquençage du génome, veut combiner la technologie blockchain à des codes ADN afin de rémunérer les propriétaires des données génétiques en cryptomonnaie. Commercialiser son ADN est une idée en vogue développée par des entreprises comme EncrypGen, Luna DNA ou Zenome, qui comptent créer des plateformes de vente d’ADN accessibles à l’individu lambda. La société Nebula Genomics, fondée en février 2018, s’est directement lancée dans ce service en partenariat avec Veritas, en tirant parti du séquençage du génome et de la technologie blockchain. Ils proposent de conserver, crypter et monétiser le génome de leurs clients, pour que ces derniers puissent protéger, mais aussi louer leurs données personnelles à des chercheurs ou à des laboratoires médicaux de manière anonyme.

À l’instar de leurs confrères américains, le développement des connaissances sur le génome humain amène les chercheurs européens à concevoir la correction du génome embryonnaire. Le procédé consiste non plus à traiter une partie génétiquement déficiente d’une personne (organe, tissu) mais à directement modifier la cellule-œuf à l’origine de tout l’organisme. Grâce au séquençage de l’ADN, les scientifiques peuvent aujourd’hui identifier, diagnostiquer et potentiellement trouver des traitements à des maladies génétiques. Par le biais du Projet du Génome Humain (Human Genome Project), le séquençage du génome humain s’est finalisé en 13 ans pour un coût de 2,7 Mds $. Les scientifiques de ce programme discret cherchent dorénavant 100 M$ pour synthétiser de l’ADN humain d’ici 5 ans pour, qu’à terme, le coût de fabrication d’une paire de base d’ADN soit réduit à un centime. Les effets sur l’espèce humaine seraient inévitables et totalement inconnus. En l’état actuel des connaissances, la sélection pure et simple des embryons humains (eugénisme) serait plus pondérée que leur modification directe.

Des expérimentateurs du monde des biotech tentent de modifier leur génome ou de s’implanter de manière artisanale des dispositifs électroniques pour accroître leurs capacités. Si l’expérience a par exemple été effectuée par Josiah Zayner, diplômé en biophysique moléculaire (Université de Chicago), sa diffusion en direct sur Facebook a pour objectif de démontrer que l’édition du génome peut être effectuée par le commun des mortels avec peu de matériel. Cet individu a utilisé la technique d’édition génétique médiatisée CRISPR/Cas9, également appelée les « ciseaux de l’ADN ». Mais selon deux études publiées récemment, la modification des génomes avec la méthode CRISPR-Cas9 a des chances d’accroître le risque que les cellules altérées déclenchent un cancer. Avec cette technique, des embryons humains issus d’une cellule porteuse d’une mutation génétique ont notamment pu être génétiquement corrigés, en modifiant son génome au premier stade de son développement. Une première selon l’étude menée par des scientifiques chinois de l’Université de médecine de Canton.

Une équipe d’experts de l’Imperial College London, ont également fait une avancée importante en intégrant des cellules vivantes dans des cellules artificielles qu’ils ont créées. Ces cellules hybrides synthétiques pourraient permettre d’élaborer et synthétiser des médicaments.

D’autres chercheurs de l’Université Rockefeller (New York) ont carrément cultivé en laboratoire des embryons humains artificiels, dérivés de cellules embryonnaires humaines. Au quatorzième jour, les scientifiques ont greffé ces cellules humaines sur des embryons de poulet âgés de 12 heures (un stade de développement équivalent aux 14 jours de développement humain). Ils ont donc créé un embryon hybride mi-humain mi-poulet viable, où les cellules humaines, qui ont pris le rôle d’organisatrices, ont créé une colonne vertébrale secondaire et un système nerveux. L’étude a été publiée dans la revue scientifique Nature le 23 mai 2018.

Même tendance avec une probable alternative future au don d’organe : la culture d’organes humains artificiels en laboratoire à des fins médicales. Des chercheurs américains ont été en mesure de développer un foie humain à l’intérieur d’un cochon vivant donnant naissance à des hybrides mouton-humain. Une limite de 28 jours de développement des embryons a été fixée faute d’autorisation. Les organismes de régulation US, qui interdisent actuellement le financement public d’hybrides humains-animaux, ont annoncé en 2016 que ce moratoire pourrait être levé. En l’état actuel, ce sont des donateurs privés qui financent les recherches préliminaires.

Les dernières avancées de la procréation humaine artificielle

Entre l’agence allemande qui vend des femmes vierges aux enchères au plus offrant et la technologisation croissante de la procréation, le monde moderne progressiste apparaît comme de plus en plus humainement rétrograde. Inversement, la capitalisation marchande de toutes les sphères de l’Homme et sa société, parfaitement corrélée aux processus précédents, est grandissante.

L’eugénisme désigne « l’ensemble des recherches (biologiques, génétiques) et des pratiques (morales, sociales) qui ont pour but de déterminer les conditions les plus favorables à la procréation de sujets sains et, par là même, d’améliorer la race humaine » selon le Centre national de ressources textuelles et lexicales. Derrière des méthodes telles que la procréation médicalement assistée (PMA) et la gestation pour autrui (GPA), c’est la possibilité de modifier l’être humain par l’eugénisme et des caractéristiques choisies qui est ouverte. C’est bien l’idéologie transhumaniste qui sous-tend ces conceptions. Choisir le sexe de son enfant, la couleur de ses cheveux et de ses yeux, ses goûts sont déjà possibles. Et pourquoi ne pas choisir le QI de sa descendance ? Ce genre de caractéristiques choisies est déjà proposé par la clinique privée de fécondation in vitro (FIV) californienne Fertility Institute du docteur Jeffrey Steinberg, avec des formules coûteuses.

Créé en Espagne, l’Institut Valencien de l’Infertilité (IVI) promet à ses clients un bébé en 24 mois grâce à la PMA, satisfait ou remboursé. Des femmes non admissibles à une PMA en France comme des célibataires, des couples de lesbiennes ou des femmes trop âgées (plus de 43 ans) peuvent tout simplement passer la frontière pour acheter leur embryon. IVI fait partie d’un groupe présent dans 13 pays, avec plus de 70 cliniques dédiées à la médecine reproductive. Le groupe a fait naître quelque 160 000 enfants. En Chine, le marché noir des ovules humains s’est développé sur l’application Wechat avec des annonces donnant la possibilité aux femmes d’en acheter pour un budget de 1 300 € à 6 600 €. La GPA et le commerce des ovules sont actuellement interdits en terre du Milieu.

En France, la PMA est actuellement réservée aux couples hétérosexuels infertiles, mais des débats sont en cours. Pour les plus pauvres, une sorte de PMA artisanale par auto-insémination est possible, mais illégale. En effet, de plus en plus de femmes cherchent des donneurs par le biais de la plateforme Facebook pour ensuite s’inséminer son sperme chez soi ou dans une chambre d’hôtel. Une étude de 2014 de la Revue d’Épidémiologie et de Santé Publique considérait déjà que « sur 300 médecins ayant participé à notre étude en 2014,  près de 50 % ont été consultés par des femmes pour des conseils en vue d’une auto-insémination, détaille le professeur Pierre Jouannet de l’Académie nationale de médecine. En majorité, ils ont répondu favorablement. Mais cette étude ne peut être extrapolée ». Selon un sondage Ifop commandé par l’Association des Familles Homoparentales (ADFH), 64 % des Français seraient favorables à l’ouverture de la PMA pour les couples de femmes et 66 % seraient plutôt ou très favorable à l’ouverture de la PMA pour les femmes célibataires.

Macron Jupiter Ier semble notamment approuver l’idée d’un élargissement de la procédure à d’autres publics bien spécifiques, soutenu par le Conseil d’État qui ne signale aucun obstacle juridique à l’extension de la PMA aux couples de femmes homosexuelles et aux femmes célibataires, y compris dans le droit conventionnel. Ce dernier recommande même la prise en charge (« financièrement modeste ») par la Sécurité sociale de toutes les PMA, même si elles ne sont pas réalisées pour des raisons médicales. C’est le député LREM des Deux-Sèvres, Guillaume Chiche, qui a signalé vouloir déposer une proposition de loi autorisant la PMA pour les femmes célibataires et les couples lesbiens. La GPA ne sera par contre pas pour tout de suite dans l’Hexagone, car il estime que la pratique des mères porteuses est contraire aux principes d’indisponibilité du corps et de l’état des personnes. Mais ce n’est probablement qu’une question de temps. La ministre des Solidarités et de la Santé, Agnès Buzyn, ex-belle-fille de Simone Veil (qui a dépénalisé l’avortement avec une loi sur l’IVG en 1974), nous prépare déjà la suite du programme libéral-libertaire avec une révision des actuelles lois bioéthiques.

À partir d’un embryon congelé le 14 octobre 1992, un bébé est né en novembre 2017. C’est la période la plus longue (24 ans) pendant laquelle un embryon viable créé à partir de donneurs anonymes n’ait jamais été stocké. En Angleterre, le puissant think tank spécialisé en bioéthique Nuffield Concil on Bioethics se montre favorable à la création de bébés avec un ADN génétiquement modifié, si la manipulation en question améliore positivement la vie du concerné.

Pour la première fois dans l’histoire du pays, les régulateurs britanniques ont donné le feu vert aux médecins pour effectuer une thérapie de don mitochondriale sur deux femmes britanniques. En d’autres termes, cette FIV aboutit à un bébé à trois parents, un vrai casse-tête anthropologique pour les systèmes de filiations fondant nos sociétés. En cas de réussite au Royaume-Uni, la tendance va commencer à être sérieusement étudiée dans d’autres pays du monde. Cette thérapie de don mitochondriale avait déjà été pratiquée par John Zhang (célèbre médecin new-yorkais spécialiste de la FIV) sur une femme mexicaine atteinte du syndrome de Leigh (une maladie mitochondriale) en 2015. Un an plus tard, elle a pu donner naissance à un enfant n’ayant pas hérité du syndrome. En 2017, la FDA a interdit à Zhang d’effectuer la thérapie aux États-Unis. Des médecins ukrainiens de la Clinique de Nadiya à Kiev ont également permis à un couple infertile de donner naissance à un bébé conçu par thérapie mitochondriale avec la fabrication d’un embryon hybride.

A Bologne, en Italie, une jeune femme infertile a reçu une greffe d’utérus de sa sœur jumelle en mars 2017. Après une fécondation in vitro (FIV), la jeune femme est tombée enceinte normalement. Au Children University Hospital de Belgrade (Serbie), elle a donné naissance le 28 juin 2018 au premier bébé au monde issu d’une greffe d’utérus entre vraies jumelles. L’utilisation d’immunosuppresseurs, traitement à vie d’ordinaire obligatoire pour éviter le rejet du greffon, n’a pas été nécessaire car les deux femmes partagent le même système immunitaire.

Quinze enfants sont nés ces trois dernières années à la suite d’un programme expérimental de l’Institut de médecine et des sciences de procréation de St Barnabas dans le New Jersey. Des femmes ayant des soucis de fécondité ont reçu des gènes extérieurs d’une femme donneuse, insérés dans leurs ovules avant d’être fécondés. Des tests d’empreinte génétique sur des enfants entre un et deux ans confirment qu’ils ont hérité de l’ADN de deux femmes et d’un homme. Incorporer des gènes supplémentaires dans la lignée germinale (cellules allant des cellules souches aux gamètes) de ces enfants signifie qu’ils pourront également les transmettre à leur propre descendance. L’Australie, la Belgique, le Brésil, le Canada, la France, l’Allemagne, Israël, les Pays-Bas et le Royaume-Uni, ont quant à eux interdit, sous peine de poursuites criminelles, toute édition des lignées germinales.

La gestation artificielle chère à Huxley entre également dans le champ du possible avec l’expérimentation réussie, aux États-Unis évidemment, d’un utérus artificiel expérimenté avec succès chez des fœtus d’agneaux. L’ectogenèse est le développement de l’embryon et du fœtus dans un utérus artificiel. Dans ce cas précis, les chercheurs l’ont testé sur des agneaux mis en gestation pendant 20 à 28 jours. Huit agneaux ont été extraits du ventre de leur mère 105 à 120 jours après le début de la gestation (soit l’équivalent, en termes de maturité pulmonaire, de 22 ou 24 semaines d’aménorrhée dans l’espèce humaine). Dans cet utérus artificiel, les agneaux se sont développés sans aucun problème et un agneau aujourd’hui âgé d’un an ne présente aucune anomalie. Les Américains présument que l’expérience sera certainement étendue à l’homme d’ici dix années.

Avec cette dernière avancée, la perspective de la jonction entre le fœtus extra-utérin et l’embryon conçu in vitro est ouverte. En effet, les recherches des biologistes britanniques ont parallèlement progressé sur la culture in vitro des embryons humains. En mai 2016, une équipe issue de l’Université de Cambridge a cultivé in vitro des embryons humains jusqu’à un stade jamais atteint : treize jours. Une rupture pouvant reconsidérer la « règle des quatorze jours » de 1979, interdisant un développement embryonnaire in vitro au-delà de cette période. Cette règle avait été approuvée par les États-Unis, la Chine, l’Inde, le Royaume-Uni, l’Australie, l’Espagne, le Danemark et les Pays-Bas. En France, la limite est fixée à sept jours en pratique, selon une recommandation du Comité consultatif national d’Éthique, étape à laquelle les embryons humains doivent s’implanter dans la paroi interne de l’utérus pour continuer leur développement.

D’abord destinées aux grands prématurés, au traitement de la stérilité ou d’avortements à répétition (risque d’hypotrophie et de prématurité majoré pour les bébés nés de mères ayant pratiqué plus de 2 IVG), le phénomène d’inséminations artificielles va évidemment dériver de ses fonctions thérapeutiques et seront utilisés pour pourvoir les désirs d’enfant sur mesure de certains individus au capital élevé. Et du désir au commerce mondial des mères porteuses esclavagisées des pays sous-développés, il n’y a qu’un pas déjà franchi. De nombreux experts estiment finalement que d’ici 25 ans environ, les bébés ne seront plus conçus naturellement, car les enjeux de la procréation et de l’avenir de la descendance sont bien trop importants pour être laissés au hasard, surtout quand celui-ci ne sera plus inévitable. Au vu de ces différents constats, un monde génétiquement contrôlé est certainement à venir.

CRISPR-Cas9 peut produire des suppressions d’ADN

La technique d’édition de gènes CRISPR-Cas9 produit des suppressions d’ADN indésirables

Les scientifiques ont découvert qu’il provoque des changements importants et dangereux de l’ADN dans les cellules de la souris et de l’homme. Une équipe du Centre Wellcome Sanger a décrit comment CRISPR peut entraîner la suppression, l’inversion ou la dislocation d’une grande partie de l’ADN. Est-ce mauvais ? Oui. L’équipe écrit dans la revue Nature Biotechnology que si CRISPR est utilisé dans une thérapie génique pour éditer des milliards de cellules, de mauvais résultats – qui pourraient inclure des cellules devenues cancéreuses – sont «probables».

Les startups travaillant sur les techniques CRISPR ont rejeté les conclusions comme non pertinentes. Tom Barnes, vice-président senior chez Intellia Therapeutics, a déclaré à Genetic Engineering News que la nouvelle étude était “un peu alarmiste”.

Nature News

L’édition génétique par CRISPR pourrait induire des centaines de mutations imprévues dans l’ADN