Les Etats-Unis ont officiellement commencé à utiliser CRISPR sur les humains

En juin 2016, le National Institutes of Health avait donné le feu vert à une équipe de recherche de l’Université de Pennsylvanie (UPenn) pour commencer à utiliser CRISPR sur les humains.

Lundi, un porte-parole de l’UPenn a confirmé à NPR que les chercheurs de l’institution ont officiellement commencé à utiliser CRISPR sur les humains, marquant ainsi une première nationale qui pourrait conduire à une utilisation plus répandue de la technologie dans le futur.

Le porte-parole a déclaré à NPR que l’équipe de l’UPenn avait jusqu’à présent utilisé CRISPR pour traiter deux patients atteints de cancer, l’un avec un myélome multiple et l’autre avec un sarcome. Tous deux avaient fait une rechute après les traitements habituels contre le cancer.

Premier essai clinique américain avec CRISPR sur des humains

Pour l’essai, les chercheurs ont prélevé des cellules du système immunitaire des patients, ont utilisé CRISPR pour modifier les cellules afin de cibler les tumeurs, puis les ont restituées dans le corps des patients.

“Les conclusions de cette étude seront communiquées au moment opportun par le biais d’une présentation lors d’une réunion médicale ou d’une publication évaluée par des pairs”, a déclaré un porte-parole de l’UPenn à NPR.

Il s’agit peut-être du premier essai avec CRISPR chez l’humain aux États-Unis, mais de nombreux autres essais sont déjà en cours pour déterminer si cette technologie peut traiter efficacement une variété de maladies et de troubles.

Comme l’a déclaré Fyodor Urnov, spécialiste de l’édition génétique, à NPR, “2019 est l’année où les roues d’entraînement se détachent et où le monde entier voit ce que CRISPR peut vraiment faire pour le monde dans le sens le plus positif du terme”.

NPR

Une note d’avertissement pour les amateurs de CRISPR

Quelques mises en garde sur la révolution CRISPR sont sorties de l’American Society of Hematology la semaine dernière à Washington.

Le point le plus litigieux implique le danger des effets hors cible, qui se produisent lorsque CRISPR ne modifie pas la cible visée, mais une région différente du génome total. En théorie, cela pourrait provoquer des effets néfastes, y compris le cancer (si, par exemple, CRISPR désactive un gène suppresseur de tumeur).

De nombreux chercheurs, y compris ceux qui prévoient des essais cliniques, utilisent « dans les méthodes in silico » — des algorithmes basés sur la biologie computationnelle pour prédire quelles régions du génome sont assez similaires à la région ciblée. Malheureusement, « l’algorithme manque un bon nombre d’entre eux, » a déclaré le Dr J. Keith Joung du Massachusetts General Hospital. « Ils ne sont pas vraiment très bons pour prédire où il y aura des effets hors cible, » dit Joung, qui est co-fondateurs de Editas Medecine et a des intérêts financiers dans d’autres entreprises biotechnologiques.

Une autre raison de s’inquiéter : les génomes de deux individus sont identiques. Donc même si la plupart des patients n’ont aucun ADN qui pourrait emmener CRISPR loin de sa cible, certains patients sont très susceptibles d’avoir ces séquences, grâce à des mutations aléatoires.

Les amateurs de CRISPR ont-ils leur tête dans le sable sur la sécurité de la modification génétique ?

Tandis que les 150 experts de l’industrie, du milieu universitaire, les National Institutes of Health et la Food and Drug Administration ont été optimistes sur la possibilité d’utiliser l’édition de génome pour traiter et guérir la drépanocytose, la leucémie, le VIH/SIDA et d’autres troubles sanguins, une préoccupation émergente que certains enthousiastes CRISPR-ers ne tiennent pas compte des preuves croissantes que CRISPR seraient susceptibles de modifier par inadvertance des régions du génome autres que celles prévues.

« Dans les premiers jours de ce domaine, les algorithmes ont été générés pour prédire les effets hors cible et [faits] disponibles sur le web, » a déclaré Joung. D’autres recherches ont montré, cependant, que ces algorithmes, y compris celui du MIT et un autre appelé E-CRISP , « ont manqué un bon nombre » d’effets hors cible. « Ces outils sont utilisés dans beaucoup de documents, mais ils ne sont vraiment pas très bons pour prédire où il y aura des effets hors cible, » dit-il. « Nous pensons que nous pouvons obtenir des effets hors cible à moins de 1 %, mais nous devons faire mieux, » surtout si la modification du génome doit être utilisée sans danger pour traiter les patients.

Les effets hors cible se produisent à cause de la façon dont CRISPR fonctionne. Il comporte deux parties. RNA makes a beeline for the site in a genome specified by the RNA’s string of nucleotides, and an enzyme cuts the genome there. Trouble is, more than one site in a genome can have the same string of nucleotides. Scientists might address CRISPR to the genome version of 123 Main Street, aiming for 123 Main on chromosome 9, only to find CRISPR has instead gone to 123 Main on chromosome 14.

À titre d’exemple, Joung a montré, que CRISPR est censé modifier un gène appelé VEGFA (qui stimule la production des vaisseaux sanguins, y compris ceux utilisés par des tumeurs cancéreuses) sur le chromosome 6. Mais, les études montrent, que CRISPR peut également frapper des gènes sur pratiquement chacun des 22 autres chromosomes humains. Il en va de même pour les CRISPRs qui visent d’autres gènes. Bien que chaque CRISPR à zéro à une dizaine de sites hors-cible « connu »  (où « connu » des moyens prévus par ces algorithmes basés sur le web), Joung dit, qu’il peut y avoir jusqu’à 150 « nouveaux » sites hors-cible, les chercheurs n’avaient aucune idée que ces erreurs étaient possibles.

Une des raisons de s’inquiéter des effets hors-cible est que l’édition de génome peut désactiver un gène suppresseur de tumeur ou activer un cancérigène. Il pourrait également permettre à des morceaux de deux chromosomes différents, de se réunir, un phénomène appelé translocation, qui est la cause de la leucémie myéloïde chronique, entre autres problèmes.

Lire la suite sur STAT News

→ voir aussi : Les dangers de l’édition du génome humain pour la reproduction

L’avenir (immédiat) de CRISPR est chinois

Les chercheurs en Chine prévoient d’utiliser la technologie d’édition du génome CRISPR-cas9 chez les patients dès le mois prochain, a rapporté Nature jeudi. Comme leurs homologues américains, le groupe chinois utiliserait CRISPR pour modifier les lymphocytes T (cellules T), du système immunitaire chez les patients atteints d’un cancer. Ils cherchent à désactiver le PD-1.

Lire la suite sur STAT News

Feu vert pour le premier essai humain avec CRISPR

Vous pensez que l’ approbation de cette thérapie expérimentale est une “évidence”, mais sachez que les essais de thérapie génique humaine ont été cahoteux depuis 1999 .

Les premiers essais pourraient commencer dès la fin de l’année.
Un premier essai humain avec CRISPR ?
L’argent derrière le premier test humain CRISPR vient du milliardaire Sean Parker

Lire l’article sur Nature News

L’argent derrière le premier test humain CRISPR vient du milliardaire Sean Parker

Une nouvelle vague de traitements contre le cancer pourrait combiner l’immunothérapie et l’édition génétique.

Le premier test proposé de la technologie d’édition génétique CRISPR pour les êtres humains est financé par le milliardaire Sean Parker, a appris MIT Technology Review.

Le nouveau traitement contre le cancer, initialement divulgué la semaine dernière, est en cours d’examen par un comité consultatif fédéral à Washington, D.C., et pourrait devenir le premier essai clinique impliquant CRISPR, la sulfureuse technologie de modification génétique.

Nous pouvons maintenant rapporter que Parker, un homme de 36 ans dont les ressources nettes sont estimées à $2,4 milliards, finance l’étude.

Parker, plus connu pour son rôle en tant que premier président de Facebook et co-créateur du site de partage de musique Napster, s’est projeté dans la recherche sur le cancer en avril, disant qu’il donnerait $250 millions en financements à six centres, dont un à l’University of Pennsylvania, dans ce qu’il appelle un « projet Manhattan pour guérir le cancer avec le système immunitaire. »

Penn a confirmé que la fondation de charité de Parker financerait l’essai, qui utilisera l’édition génétique pour modifier le système immunitaire des lymphocytes T pour attaquer trois types de cancers : le myélome, le mélanome, et le sarcome.

Le soutien de Parker souligne comment les riches entrepreneurs d’internet pensent pouvoir accélérer la recherche sur le cancer. Parker, un ancien hacker dont le résumé comprend une altercation avec le FBI, dit qu’il pense que les lymphocytes T sont « comme de petits ordinateurs » pouvant être reprogrammés (voir  « 10 découvertes technologiques de 2016 : ingénierie immunitaire »).

Il n’y a pas de pénurie de financement pour la thérapie immunitaire. De nouveaux médicaments sont capables de guérir certains cas de mélanome avancé ; les traitements de lymphocytes T, dont certains lancés par Penn, ont connu un succès spectaculaire contre la leucémie.

Mais la fondation de Parker est peu commune, car elle dit vouloir contrôler les brevets sur la recherche qu’elle finance et amener des traitements sur le marché.

« Et si nous avions un système dans lequel toute la [propriété intellectuelle] pourrait être partagée entre les scientifiques ? » a-t-il dit à Dateline NBC dans un programme diffusé en mai.

Traduction Thomas Jousse

Lire la suite sur MIT Technology Review

Un premier essai humain avec CRISPR ?

Les médecins de l’Université de Pennsylvanie demandent l’approbation pour l’édition du génome afin de combattre le cancer.

Un conseil fédéral de sécurité aura lieu la semaine prochaine afin de considérer la première utilisation humaine de la technologie d’édition du génome CRISPR, selon les instituts de la santé nationaux (National Institutes of Health).

Le traitement proposé est une thérapie immunitaire dans laquelle les propres cellules sanguines d’un patient seront enlevées et génétiquement modifiées à l’aide de la technologie, un type de ciseaux moléculaires capables de couper précisément l’ADN.

Une entreprise de Cambridge, Editas Medicine, annonce précédemment, qu’elle a l’intention de commencer un essai en 2017  en utilisant CRISPR pour traiter une maladie oculaire rare.

La nouvelle proposition d’utilisation de CRISPR pour modifier les cellules immunitaires humaines pourrait se produire plus tôt que cela. L’Université de Pennsylvanie n’a pas immédiatement répondu à une demande de commentaire, et le calendrier de l’étude n’a pas pu être déterminé.

Lire la suite sur MIT Technology Review

Des implants cérébraux conçus pour fondre et ne laisser aucune trace

Des chercheurs américains et chinois, de l’Université de Pennsylvanie, ont mis au point plusieurs technologies bio dissolubles, des implants médicaux non-invasifs qui peuvent être absorbés par l’organisme.

Illustration of the construction of a bioresorbable neural electrode array for ECoG and subdermal EEG measurements. A photolithographically patterned, n-doped silicon nanomaterial (300 nm thick) is used for electrodes and interconnects. A 100 nm thick film of silicon dioxide and a foil of PLGA (30 nm thick) serve as a bioresorbable encapsulating layer and substrate, respectively. The device connects to an external data acquisition system through a conductive film interfaced to the Si nm interconnects at contact pads at the edge. (credit: Ki Jun Yu et al./Nature Materials))

Ils ont créé des capteurs, constitués de couches de molybdène et de silicium, qui peuvent surveiller les signaux du cerveau puis fondre à distance sans laisser de trace.

La recherche a été publiée en ligne dans la revue Nature et représente une grande avancée dans la technologie des biocapteurs, car elle offre une résolution égale ou supérieure pour mesurer l’activité électrique du cerveau, par rapport à des électrodes classiques, tout en éliminant « les risques, les coûts et l’inconfort associés à la chirurgie pour extraire les dispositifs actuels utilisés pour le suivi post-opératoire », selon le chercheur principal Brian Litt, professeur de neurologie, neurochirurgie et bio-ingénierie à l’École de Médecine de Perelman.

Les appareils seront particulièrement utiles pour la cartographie de la neurophysiologie et les modèles neuronaux de certains troubles mentaux et neurologiques — par exemple, la maladie de Parkinson, la dépression et l’épilepsie. D’autres applications utiles comprendront le suivi post-opératoire, et le placement de dispositifs impliqués dans la chirurgie cardiaque et neuronale.

La recherche a été financée par la DARPA entre autres.


Surveiller le cerveau avec un implant soluble


Dans les recherches connexes, les scientifiques chinois ont créé un dispositif bio dissolubleun « Memristor », (résistance de mémoire), composé de protéines d’albumines (blanc d’œuf) laquées sur un film de silicone, avec des électrodes de magnésium et de tungstène. Leur recherche a été publiée dans la revue ACS Applied Materials and Sciences.

Des tests ont montré que la performance de l’appareil est comparable aux autres memristors plus conventionnels et peut stocker des informations sur 10 000 secondes sans subir de détérioration. La puce peut fonctionner pendant trois mois dans des conditions sèches et dans des conditions humides, les albumines et les électrodes se décomposent en 2 à 10 heures. Les matières restantes se dissolvent après environ trois jours, laissant des traces insignifiantes.

La recherche a été financée par le National Natural Science Foundation of China.

Source : Kurzweil News