Des puces et des hommes

L’homme amélioré par la technologie, c’est maintenant. En Suisse, des bio-hackers vivent avec une puce dans la main. Nouvo les a rencontré à « implant party » organisée pendant le LUFF à Lausanne au mois d’octobre.
Un reportage de l’émission Nouvo, une émission de la Radio Télévision Suisse, vendredi 18 novembre 2016.

Une femme a des micropuces implantées dans chacune de ses mains

Une australienne de 27 ans, Shanti Korporaal, futuriste et entrepreneur (a créé sa propre boutique en ligne ChipMyLife), c’est implantée des micropuces dans chacune de ses mains (micropuce RFID – technologie NFC) pour déverrouiller des portes, régler ses achats, sans sortir son portefeuille, son trousseau de clé ou même son smartphone… lire l’article sur BFMTV.

“Ces dispositifs n’ont pas été testés ou certifiés par un organisme de réglementation pour l’implantation ou l’utilisation sur ou dans le corps humain”.

En juin dernier, un député demandait au gouvernement d’interdire purement et simplement la pose de puces NFC sous la peau au travers d’une question écrite parue au Journal officiel, faisant suite à une  « implant party » qui a eu lieu le 13 juin 2015, dans le cadre du festival Futur en Seine 2015, sur le plateau média de la Gaîté lyrique.

Thanks to the RFID chip embedded in one hand, Korporaal can unlock her office’s garage with a back-handed bump to a scanner as she zips into work on her Vespa. On the other hand in the same spot, the fleshy space between her thumb and forefinger, sits a near-field communication chip that stores her health and contact data. She can feel a chip’s hard lump if she probes with a finger; otherwise, she’s used to them by now… lire l’article sur The Washington Post

Expérience de Bitcoin avec une puce NFC : une clé privée implantée
Des dispositifs implantables et des lentilles de contact pour communiquer avec les Smartphones
CBS Pittsburgh : Des gens s’implantent des puces électroniques sous la peau
Implants, puces et transhumainsFrance Info : Les implants NFC arrive en France

Des dispositifs implantables et des lentilles de contact pour communiquer avec les Smartphones

The energy savings from interscatter communication allows power-limited devices such as smart credit cards (left), implanted medical devices (middle) and smart contact lenses (right) to achieve Internet connectivity. (Credit: Mark Stone/University of Washington)

Les ingénieurs de l’Université de Washington ont créé un moyen de communication qui permet aux périphériques tels que des implants cérébraux et des lentilles de contact « parlent » aux objets du quotidien tels que les Smartphones et les montres.

Ils appellent cette méthode « communication interscatter », basée sur une technique appelée rétrodiffusion qui permet aux périphériques d’échanger des informations simplement en réfléchissant des signaux existants. Le terme « interscatter » vient du fait que cette technique permet une communication inter-technologie en utilisant des signaux Bluetooth pour transmettre une connexion Wi-Fi.

La communication interscatter utilise les radios Bluetooth, Wi-Fi ou ZigBee embarqués dans les appareils mobiles comme les smartphones, les montres, les ordinateurs portables, les tablettes et les casques d’écoute pour servir à la fois les sources et les récepteurs pour ces signaux reflétés.

L’utilisation de ces réflexions, un dispositif interscatter, comme une lentille de contact intelligente, transforme des signaux Bluetooth depuis un périphérique tel qu’un smartwatch dans les transmissions Wi-Fi qui peuvent être captées par un Smartphone.

Tatouage électronique provisoire DuoSkin transformant votre peau en une interface tactileSens artificiel : Un implant vous donnera un sixième sensUn implant de la taille d’un grain de poussière pourrait surveiller des nerfs en temps réelUne puce microfluidique reproduit la jonction neuromusculaire

« La connectivité sans fil pour les dispositifs implantés peuvent transformer notre manière de gérer les maladies chroniques, » a déclaré Vikram Iyer, doctorant en génie électrique. « Par exemple, une lentille de contact pourrait surveiller le niveau de sucre dans le sang des diabétiques avec les larmes et envoyer des notifications au téléphone lorsque le niveau de sucre dans le sang diminue. »

Un document sur le travail devrait être présenté la 22 août lors de la conférence annuelle de l’Association for Computing Machinery’s Special Interest Group on Data Communication (SIGCOMM 2016) au Brésil.

Pour en savoir plus “interscatter” ; University of Washington

Un implant de la taille d’un grain de poussière pourrait surveiller des nerfs en temps réel

Neural dust
Credit: UC Berkeley

Des ingénieurs de l’Université Berkeley ont fabriqué le premier capteur sans-fil, de la taille d’un grain de poussière pouvant être implanté dans le corps humain.

Ces capteurs sans batterie pourraient être utilisés pour stimuler des nerfs et des muscles, cette technologie ouvre aussi la porte à “l’électroceutique[1]” pour traiter les troubles comme l’épilepsie, pour stimuler le système immunitaire ou bien encore diminuer les inflammations.

La soi-disant « poussière » neuronale, que l’équipe a implantée dans les muscles et les nerfs périphériques des rats, est unique du fait que des ultrasons sont utilisés pour actionner et lire les mesures. La technologie des ultrasons est déjà bien développée pour l’usage hospitalier, et les vibrations ultrasonores peuvent pénétrer presque n’importe où dans le corps, contrairement aux ondes radios, disent les chercheurs.

« Je pense que les perspectives à long terme pour les poussières de neurones ne sont pas seulement dans les nerfs et le cerveau, mais sont bien plus larges », dit Michel Maharbiz, professeur agrégé en génie électrique et sciences informatiques. « Avoir accès à la télémétrie à l’intérieur du corps n’a jamais été possible parce qu’il n’y avait aucun moyen d’insérer quelque chose d’extrêmement petit très profondément [dans le corps]. Mais je peux maintenant prendre un grain de rien du tout et le placer à côté d’un nerf ou d’un organe, dans votre appareil digestif ou un muscle, et lire les données télémétriques [qui en ressortent]. »

Les capteurs, que les chercheurs ont déjà miniaturisé à 1 millimètre cube – environ la taille d’un gros grain de sable – contiennent un cristal piézoélectrique qui convertit les vibrations ultrasons venant de l’extérieur du corps en électricité pour alimenter le capteur intégré, qui est en contact avec une fibre nerveuse ou musculaire. Une pointe de tension dans la fibre modifie le circuit et la vibration du cristal, qui change l’écho détecté par le récepteur d’ultrasons, typiquement le même dispositif qui génère des vibrations. Le léger changement, appelé rétrodiffusion (backscatter en anglais), leur permet de déterminer le voltage (la tension).

Tel que rapporté dans la revue Neuron, les chercheurs ont mis sous tension les capteurs passifs toutes les 100 microsecondes avec six pulsions ultrasonores de 540 nanosecondes, ce qui leur a donné une lecture continue en temps réel. Ils ont recouvert la première génération de nœud capteur (dit “mote” en anglais) – 3 millimètres de long, 1 millimètre de haut, et 4/5 millimètres de large – avec de l’époxy chirurgicale, mais ils sont actuellement en train de fabriquer des nœuds capteurs à partir de fines couches biocompatibles qui pourraient durer à l’intérieur du corps sans dégradation pendant une décennie ou plus.

Tandis que les expériences à ce jour ont porté sur le système nerveux et les muscles périphériques, les grains de poussière neuronaux pourraient fonctionner aussi bien dans le système nerveux central et le cerveau pour contrôler des prothèses. Les électrodes implantables d’aujourd’hui se dégradent en une ou deux années, et se connectent toutes via des fils passant à travers des trous dans le crâne. Les capteurs sans-fil – de plusieurs douzaines à une centaine – pourraient être scellés à l’intérieur, évitant ainsi les infections et les mouvements incontrôlés des électrodes.

« Le but originel du projet de poussière neuronale (the neural dust project) était d’imaginer la prochaine génération d’interfaces cerveau-machine, et d’en faire une technologie clinique viable », dit l’étudiant diplômé de neuroscience Ryan Neely. « Si un paraplégique veut contrôler un ordinateur ou un bras robotisé, vous n’auriez qu’à implanter cette électrode dans le cerveau et elle durerait toute une vie. »

Neural Dust System Overview
(A) An external transducer powers and communicates with a neural dust mote placed remotely in the body. Driven by a custom transceiver board, the transducer alternates between transmitting a series of pulses that power the device and listening for reflected pulses that are modulated by electrophysiological signals.
(B) A neural dust mote anchored to the sciatic nerve in an anesthetized rat. Inset shows neural dust mote with optional testing leads.
(C) Components of a neural dust mote. The devices were assembled on a flexible PCB and consist of a piezoelectric crystal, a single custom transistor, and a pair of recording electrodes.
(D) The transceiver board consisted of Opal Kelly FPGA board, application-specific integrated circuit (ASIC) board (Seo et al., 2015, Tang et al., 2015), and the transducer connector board.

De plus en plus petit

Dans un précédent article publié en 2013, les chercheurs estimaient qu’ils pourraient miniaturiser les capteurs d’un cube de 50 microns de chaque côté – environ 2/1000 millième d’un pouce, soit la moitié de la largeur d’un cheveu humain. À cette taille, les nœuds capteurs pourraient nicher à seulement quelques axones des nerfs et enregistrer en continu leur activité électrique.

« Les capteurs sont assez petits pour avoir une bonne application dans le système nerveux périphérique, pour le contrôle de la vessie ou la suppression de l’appétit, par exemple », explique le co-auteur Jose Carmena, professeur en génie électrique et sciences informatiques. « La technologie n’est pas encore tout à fait là pour arriver à la taille visée de 50 microns, dont nous aurions besoin pour le cerveau et le système nerveux central. Une fois que cela sera cliniquement prouvé, la poussière neuronale remplacera les électrodes filaires. À ce moment, une fois que vous fermez le cerveau, vous avez fini. »

L’équipe travaille maintenant à miniaturiser davantage le dispositif, trouver des matériaux biocompatibles, et à améliorer l’émetteur-récepteur de surface qui envoie et reçoit les ultrasons, idéalement en utilisant la technologie d’orientation (de balayage) de faisceaux pour focaliser les ondes sonores sur des nœuds capteurs individuels. Ils sont en train de construire de petits sacs à dos pour les rats pour maintenir l’émetteur-récepteur à ultrasons qui enregistre les données des nœuds capteurs implantés.

Pourquoi des ultrasons ?

Ils travaillent également à élargir la capacité des nœuds capteurs à détecter des signaux non-électriques, tels que les niveaux d’oxygène ou le taux d’hormones.

« Le plan est d’implanter ces grains de poussière neuronaux (neural dust motes) partout dans le corps, et d’avoir un patch sur l’emplacement implanté envoyant des ondes par ultrasons pour réveiller et recevoir les informations nécessaires en provenance des nœuds capteurs pour le traitement souhaité que vous voulez », dit Dongjin Seo, un étudiant diplômé en ingénierie électrique et sciences informatiques. « Finalement vous pouvez utiliser plusieurs implants et un seul patch qui cingleraient (that would ping) chaque implant individuellement, ou tous en même temps ».

Les chercheurs ont conçu l’idée de poussière neuronale il y a environ cinq ans, mais les tentatives pour alimenter un dispositif implantable et lire les données en utilisant des ondes radio ont été décevantes. [Les ondes] radio s’atténuent très vite avec la distance dans les tissus, de sorte que communiquer avec des dispositifs profonds dans le corps serait difficile sans utiliser le rayonnement à haute intensité potentiellement dangereuse.

Marharbiz a eu l’idée des ultrasons, et publie en 2013 un document décrivant comment un tel système pourrait fonctionner. « Notre première étude a démontré que la physique fondamentale des ultrasons permettait l’utilisation de très petits implants qui pourraient enregistrer et communiquer les données neuronales », dit Maharbiz. Lui et ses étudiants ont aujourd’hui créé ce système.

« L’ultrason est beaucoup plus efficace quand vous avez des dispositifs qui sont à l’échelle millimétrique ou plus petits et qui sont incorporés profondément dans le corps », dit Seo. « Vous pouvez obtenir beaucoup de puissance et transférer beaucoup plus efficacement de l’énergie et de la communication en utilisant les ultrasons, par opposition aux ondes électromagnétiques, ce qui a été la méthode d’utilisation de transfert d’énergie sans fil dans des implants miniatures. »

« Maintenant que vous avez un capteur neuronal fiable, peu invasif dans le corps, la technologie pourrait devenir le conducteur pour toute une gamme d’applications, des choses qui aujourd’hui n’existent même pas », dit Carmena.

La Defense Advanced Research Projects Agency of the Department of Defense (DARPA) a soutenu les travaux.

via Futurity, Source: UC Berkeley

Original Study DOI: 10.1016/j.neuron.2016.06.034

Traduction Thomas Jousse

Note :

[1] Stimulation non invasive du nerf vague (nVNS) pour le traitement de plusieurs troubles des domaines neurologique, psychiatrique, gastro-entérologique et autres.

L’électroceutique ou bioélectronique qui allie biologie, informatique, science des matériaux et nanotechnologie en liaison avec le réseau électrique naturel du corps. En y ajoutant la science du cerveau et de l’intelligence artificielle, on touche à la cognitique pour créer les NBIC. On en vient à modéliser le vivant au milliardième de mètres, et Glaxo-Smith-Kline (GSK) est leader en ce domaine. On prévoit des nano circuits réparateurs, auto dissolvants à la chaleur du corps, une fois leur mission achevée. Les recherches sont concentrées actuellement sur l’asthme, puis le diabète. Concrètement, il s’agit d’un « dispositif sans fil implantable qui permettrait d’enregistrer, de stimuler et de bloquer les signaux neuronaux sur un seul organe » selon Stéphane MARCHAND, Rédacteur en chef de ParisTechReview.

Enregistrer