Une nouvelle bio-imprimante facilite la fabrication en 3D de la chair et des os

credit: biobot2.com

La bio-imprimante 3D idéale, selon Y. Shrike Zhang, spécialiste en génie tissulaire, ressemblerait à une machine à pain : « Elle aurait quelques boutons sur le dessus et on en pousserait un pour choisir le tissu d’un cœur ou celui d’un foie. » Par la suite, Zhang pourrait vaquer à ses occupations tandis que la machine produirait des couches complexes de cellules et autres matières.

Cette technologie n’est pas encore tout à fait au point. Mais la nouvelle imprimante BioBot 2 semble avoir pris un pas dans cette direction. Cet appareil de table comprend une série de nouvelles fonctionnalités conçues pour procurer aux utilisateurs un contrôle simple d’une puissante machine, y compris une calibration automatisée, six têtes d’impression pour six différentes bio-encres, une précision de positionnement d’un micromètre sur les axes x, y, et z, et une interface de logiciel conviviale qui gère le processus d’impression du début à la fin.

Le cofondateur et chef de la direction de BioBots, Danny Cabrera, atteste que les caractéristiques du BioBot 2 sont le fruit d’une collaboration avec des chercheurs en génie tissulaire.

« Pour faire avancer cette technologie, nous devions faire plus que développer un nouveau robot » — Danny Cabrera, chef de la direction de BioBots

« Au cours de la dernière année et demie, nous avons travaillé de près avec des scientifiques pour comprendre ce dont ils avaient besoin pour faire avancer la technologie, dit-il, nous nous sommes aperçus qu’une simple bio-imprimante ne suffisait pas, ils avaient besoin de plus, nous devions donc développer plus qu’un nouveau robot. »

Le logiciel de la société se trouve dans le cloud, ce qui facilite le téléchargement des paramètres d’impression par les utilisateurs, paramètres qui sont transposés par le système en protocoles pour la machine. Après l’impression du tissu, le système peut utiliser des caméras intégrées et un logiciel de vision informatisée pour conduire des analyses de base. Par exemple, il peut calculer le nombre de cellules vivantes par rapport à celui des cellules mortes d’un tissu imprimé ou mesurer la longueur des axones de neurones imprimés. « Cette plateforme leur permet de mesurer la façon dont les différents paramètres d’impression, comme la pression ou la résolution cellulaire, affectent la biologie du tissu », déclare Cabrera.

Le BioBot 1 a fait son apparition sur le marché en 2015 et se vend à 10 000 $ US. L’entreprise accepte maintenant des commandes pour le BioBot 2 à 40 000 $ US, et en prévoit sa distribution plus tard cette année.

Chacune des têtes d’impression du BioBot 2 peut refroidir sa bio-encre à 4 degrés Celsius ou la chauffer à 200 degrés Celsius. La température du plateau d’impression peut également être contrôlée et celui-ci est équipé de lumières visibles et ultraviolettes qui déclenchent la réticulation des matériaux pour solidifier les formes imprimées.

Cabrera affirme que le contrôle de température facilite l’impression du collagène, principale composante des os et des tissus conjonctifs, parce que la réticulation se fait à basse température. « Beaucoup d’utilisateurs trafiquent leur bio-imprimante pour qu’elle puisse imprimer le collagène, note Cabrera, certains la placent dans le réfrigérateur ».

Bien que certains chercheurs ne souhaiteront pas utiliser les six têtes d’imprimante pour concevoir des tissus composés de six différents matériaux, Cabrera estime que cette conception permet aussi aux chercheurs de multiplexer les expériences. Par exemple, si des chercheurs expérimentent la concentration de cellules dans une bio-encre, cette fonctionnalité leur permet de tester simultanément six différentes versions. « Des semaines de travail peuvent être épargnées si vous attendez que vos cellules se développent entre chaque expérience », mentionne Cabrera.

En outre, la machine peut déposer la matière non seulement dans une boîte de Petri, mais aussi sur une plaque de culture cellulaire munie de plusieurs petites cupules. Grâce à une plaque de 96 cupules, « vous pouvez conduire 96 petites expériences », indique Cabrera.

L’un des objectifs à long terme du bioprinting est de procurer aux médecins la capacité d’appuyer sur un bouton pour imprimer une feuille de peau pour un patient brûlé ou pour façonner avec précision un greffon osseux pour un patient défiguré dans un accident. De telles impressions ont été réussies en laboratoire, mais ne sont pas prêtes d’obtenir l’approbation réglementaire. Un objectif encore plus à long terme est celui de procurer aux médecins la possibilité d’imprimer des organes de remplacement complets, mettant fin à l’insuffisance d’organes disponibles pour la transplantation, mais cette éventualité reste aujourd’hui du domaine de la science-fiction.

En attendant ces applications, les bio-imprimantes 3D trouvent toutefois leur utilité auprès des chercheurs en biomédecine.

Zhang a conduit des expériences avec une version bêta du BioBot 1 alors qu’il travaillait au laboratoire d’Ali Khademhosseini à l’école de médecine de Harvard. Il a utilisé des bio-imprimantes pour créer des structures d’organes intégrés sur puce, qui imitent la nature intrinsèque d’organes comme le cœur, le foie ou les vaisseaux sanguins grâce à des couches d’espèces de cellules souhaitées imprimées selon des schémas complexes. Ces petites puces peuvent être utilisées pour le dépistage systématique des drogues ou des recherches médicales de base. Avec la version bêta du BioBot, Zhang a créé une « thrombose intégrée sur puce », où des caillots se sont formés à l’intérieure de vaisseaux sanguins miniatures.

Maintenant professeur en médecine et bioingénieur adjoint à la Brigham and Women’s Hospital de Boston, Zhang affirme être intrigué par le BioBot 2. Sa capacité de faire des impressions avec de multiples matériaux est séduisante, dit-il, parce qu’il souhaite reproduire des tissus complexes composés de différentes espèces de cellules. Mais il ne sait toujours pas s’il en commandera une. Comme dans bien des aspects de la science, « tout repose sur le financement », déclare-t-il.

Photo: EnvisionTec

Le BioBot 2 est la bio-imprimante la moins dispendieuse sur le marché.

Les machines haut de gamme utilisées par les chercheurs souhaitant une précision à l’échelle du nanomètre coûtent habituellement environ 200 000 $ — comme la 3D-Bioplotter d’EnvisionTec. Cette grosse machine a été utilisée pour des recherches tout juste présentées, où des scientifiques de la Northwestern University ont imprimé en 3D une structure semblable à un ovaire de souris. Lorsqu’ils l’ont ensemencé d’ovules miniatures et implanté dans une souris, l’animal a donné naissance à des souriceaux.

Photo: Cellink

Mais il existe d’autres bio-imprimantes qui font concurrence à la BioBot sur le plan monétaire. Notons plus particulièrement une compagnie suédoise appelée Cellink, qui vend une bio-imprimante de la taille de trois ordinateurs pour un prix variant entre 10 000 $ et 40 000 $.

Il y a aussi la jeune entreprise de San Francisco, Aether, qui a tout récemment commencé à vendre des unités bêta à des chercheurs pour essais et commentaires. L’entreprise a promis de lancer la commercialisation de sa Aether 1 cette année, pour seulement 9 000 $.

Photo: Aether

La principale source de concurrence pourrait ne pas provenir des autres entreprises, mais plutôt de la tendance des bioingénieurs à bricoler leurs machines. « Nous prenons habituellement une imprimante de base quelconque et produisons nos propres têtes d’imprimante et bio-encres », affirme Zhang.

Mais pour les chercheurs en biologie qui ne sont pas des ingénieurs, le BioBot 2, selon Zhang, pourrait leur permettre d’accroître considérablement leurs capacités. Ce serait comme de donner à un phobique de la cuisine la capacité soudaine de cuire à la perfection une miche de blé entier.

Traduction Stéphanie S.

IEEE Spectrum

Des ovaires obtenus par impression 3D ont donné naissance à une progéniture en pleine santé

Des bioprothèses d’ovaires ont permis à des souris initialement stériles de donner naissance à des souriceaux.

Si l’on en croit l’étude menée par la Northwestern University Feinberg School of Medicine et la McCormick School of Engineering, le nouveau monde des organes imprimés en 3D comprend maintenant des structures ovariennes qui, fidèles à leur conception, sont réellement capables d’ovuler.

La souris femelle à laquelle on a enlevé un ovaire en le remplaçant par une bioprothèse d’ovaire, n’a pas seulement été capable d’ovuler mais elle a également donné naissance à des souriceaux en parfaite santé. En outre, les mamans ont été capables d’allaiter leurs petits.

Les bioprothèses d’ovaires sont faites de structures imprimées en 3D abritant des œufs immatures, et ont réussi à stimuler la production d’hormones et restaurer la fertilité des souris, ce qui constituait l’objectif ultime de ces travaux.

“Ces recherches montrent que les bioprothèses d’ovaires fonctionnent durablement sur le long terme” a confié Teresa K. Woodruff, scientifique spécialiste de la reproduction et directrice du Women’s Health Research Institute à Feinberg. “Utiliser la bio-ingénierie plutôt que la transplantation à partir de cadavres, pour créer des structures organiques fonctionnelles capables de restaurer l’état de santé du tissu du receveur constitue le saint graal de la bio-ingénierie en médecine régénérative”.

La recherche a été publiée le 16 mai dans Nature Communications.

Dans quelle mesure ces recherchent diffèrent d’autres structures réalisées par impression 3D ?

Ce qui fait que ces travaux sont vraiment à part, réside dans l’architecture du squelette (ou échafaudage) et du matériel, ou « encre » que les scientifiques utilisent, a expliqué Ramille Shah, professeur assistante en matériaux scientifiques et ingénierie au McCormick et en chirurgie à Feinberg.

Ce matériau est de la gélatine, un hydrogel biologique fabriqué à partir de collagène décomposé, pouvant être utilisé en toute sécurité chez l’humain. Les scientifiques savaient que, quel que soit l’échafaudage qu’ils créeraient, il était nécessaire qu’il soit réalisé à partir de matériaux organiques suffisamment rigides pour être manipulés pendant la chirurgie, mais aussi suffisamment poreux pour interagir naturellement avec les tissus du corps de la souris.

« La plupart des hydrogels sont très fragiles du fait qu’ils sont majoritairement constitués d’eau, et vont donc s’effondrer sur eux-mêmes » explique Shah. « Mais nous avons trouvé une température pour la gélatine qui permet à cette dernière de s’autoporter, de ne pas s’effondrer, et permet la réalisation de structures multicouches. Personne d’autre n’a été capable d’imprimer de la gélatine selon une géométrie aussi précise et autoportante ».

Cette géométrie permet de vérifier directement si les follicules ovariens (des cellules organisées produisant des hormones et entourant une cellule-œuf immature) peuvent, ou pas, survivre dans l’ovaire. C’est l’une des découverte-clés de cette étude.

“C’est la première étude qui démontre que l’architecture en échafaudage fait la différence dans la survie du follicule”, affirme Shah. “Nous ne serions pas capables de faire cela si nous n’utilisions pas un programme d’impression 3D”.

Quel impact chez les êtres humains ?

L’unique objectif des scientifiques en développant ces ovaires bioprothèses était d’aider à restaurer la fertilité et la production d’hormones chez des femmes qui avaient souffert de traitements contre le cancer à l’âge adulte ou qui avaient survécu à des cancers lors de l’enfance et présentent aujourd’hui des risques élevés d’infertilité et de problèmes de développement liés à des hormones.

« Ce qui se passe avec nos patientes atteintes de cancer est que leurs ovaires ne fonctionnent pas suffisamment et qu’elles ont besoin de thérapies de substitution hormonale afin de déclencher la puberté » explique Monica Laronda, co-auteur principal de ces travaux et précédemment étudiante en post-doctorat au Laboratoire Woodruff. « Le but de cet échafaudage est de récapituler comment fonctionne un ovaire. Nous voyons large, c’est-à-dire que nous prenons en considération tous les stades de la vie d’une femme, donc de la puberté à la ménopause en passant par l’âge adulte ».

Laronda est maintenant professeur assistante au Stanley Manne Children’s Research Institute au Ann & Robert H. Lurie Children’s Hospital.

En outre, la fabrication réussie d’implants imprimés en 3D afin de remplacer des tissus mous complexes a un impact significatif sur le travail à venir relatif à la médecine régénérative des tissus mous.

Techniquement, comment fonctionne l’impression biologique 3D ?

Imprimer une structure ovarienne en 3D ressemble à un enfant jouant avec un Lincoln Logs (jeu de construction) explique Alexandra Rutz, co-auteur principal de l’étude et diplômée de bioingénierie médicale au laboratoire Tissue Engineering and Additive Manufacturing (TEAM) lab au Simpson Querrey Institute, coordonné par Shah. Les enfants peuvent entreposer les rondins à angle droit pour former des structures. En fonction de l’espacement entre les rondins, la structure change pour construire une fenêtre, une porte…

“L’impression 3D est réalisée en déposant des filaments” explique Rutz, qui est maintenant post-doctorante dans le cadre du Whitaker International Postdoctoral Scholar à l’École Des Mines De Saint-Étienne à Gardanne, France. Vous pouvez contrôler la distance entre ces filaments, ainsi que l’angle de progression entre les couches, et cela nous permet d’obtenir des pores de tailles et géométrie différentes.

Au laboratoire de Northwestern, les chercheurs appellent ces structures imprimées en 3D des « échafaudages », et les comparent aux échafaudages qui entourent temporairement un bâtiment pendant sa rénovation.

« Tout organe possède un squelette » explique Woodruff, qui est également Professeur d’obstétrique au Thomas J. Watkins Memorial et membre du Robert H. Lurie Comprehensive Cancer Center de la Northwestern University. « Nous avons appris à quoi ressemblait le squelette d’un ovaire et nous nous en sommes servis comme modèle pour réaliser la bioprothèse ovarienne qui serait implantée ».

Dans un bâtiment, les échafaudages soutiennent les matériaux nécessaires à la réparation du bâtiment jusqu’à ce qu’ils soient démontés. Ce qui reste est une structure capable de se tenir droite toute seule. De la même manière, l’échafaudage, ou squelette imprimé en 3D, est implanté dans une femelle et ses pores peuvent être utilisés pour optimiser l’insertion des follicules, ou des œufs immatures, dans l’échafaudage. Ce dernier permet la survie des cellules-œufs immatures de la souris ainsi que les cellules qui produisent les hormones accélérant la production d’œufs. La structure ouverte laisse suffisamment d’espace aux cellules-œufs pour qu’elles murissent jusqu’à l’ovulation. Cela s’applique également aux vaisseaux sanguins qui se développent à l’intérieur de l’implant permettant aux hormones de circuler dans le système sanguin de la souris et déclencher la lactation après que la souris ait donné naissance à ses petits.

La collaboration exclusivement féminine McCormick-Feinberg pour ces travaux a été « très fructueuse » confie Shah, et d’ajouter que c’était motivant de faire partie d’une équipe de femmes menant des recherches visant à trouver des solutions à des problèmes de santé de femmes.

« Ce qui rend ce travail collaboratif, ce sont les personnages, et la possibilité de trouver de la bonne humeur au sein de cette étude » confie Shah. « Teresa et moi avons ri à l’idée que nous étions les grands-mères de ces souriceaux ».

traduction Virginie Bouetel

Northwestern University

Une technologie de bio-impression révolutionnaire produit des battements cardiaques

The Heart Research Institute’s 3D cell printer.
Supplied: HRI

Des chercheurs du Heart Research Institute (HRI) ont mis au point une bio-imprimante 3D, (3D bioprinter), le premier du genre en Australie, qui pourrait remplacer les cellules endommagées d’un patient après une crise cardiaque.

«Les patients nous fourniraient des cellules de leur peau lorsqu’ils viennent à la clinique», a expliqué le Dr Carmine Gentile, scientifique de l’HRI. «Ces cellules peuvent générer des cellules souches et des cellules cardiaques.» La pièce des cellules cardiaques battantes produite peut être collée directement à un organe endommagé suite à une attaque. Afin d’être sûr que ce patch (la pièce) est de la bonne taille et forme, le cœur de chaque patient est d’abord numérisé pour cartographier les dommages.

D’après Gentile, «les cellules se comport[ai]ent comme un cœur réel. C’est une constatation frappante que nous avons pu identifier dans notre laboratoire.»

Initialement, une méthode utilisée pour produire divers outils et équipements, l’impression 3D a été rapidement adaptée à la médecine. Cependant, tous les bioprinteurs sont encore expérimentaux, puisque leur production n’a pas encore été rigoureusement testé par des experts médicaux.

Le bioprinting (bio-impression) est sans doute plus efficace que les méthodes actuelles à faire face aux crises cardiaques, qui obligent à ouvrir les vaisseaux cardiaques pour faciliter l’augmentation du débit sanguin. Théoriquement, cette méthode d’impression et de correction devrait fonctionner pour tous les patients sans crainte de rejet.

«Nous n’avons pas réussi à trouver une solution pour remplacer le muscle cicatriciel ou pour régénérer les cœurs. C’est le Saint Graal de la recherche cardiovasculaire en ce moment et ce n’est qu’une solution excitante potentielle », a déclaré Gemma Figree, cardiologue de la Kolling Institute.

Ceci est particulièrement pertinent puisque, selon la Heart Foundation, une personne souffre d’une crise cardiaque toutes les 34 secondes aux États-Unis, tandis que quelqu’un meurt d’une maladie cardiaque toutes les 60 secondes. Les coûts des maladies cardiaques s’élèvent à 320,1 milliards de dollars, en prenant en compte la perte de productivité et les dépenses de santé.

Les experts de l’HRI croient que les cellules cardiaques synthétiques pourraient même être utilisées pour tester les médicaments, en particulier les effets secondaires qui pourraient affecter le patient. Selon les chercheurs, ces méthodes bioprinting pourraient être disponibles d’ici environ cinq ans. Le processus sera cependant coûteux, car il est coûteux de collecter du matériel biologique pour la bio-impression 3D d’un patch.

traduction Thomas Jousse

ABC News, The Heart Foundation, Futurism