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Abstract

We examine how susceptible jobs are to computerisation. To as-
sess this, we begin by implementing a novel methodology to estimate
the probability of computerisation for 702 detailed occupations, using a
Gaussian process classifier. Based on these estimates, we examine ex-
pected impacts of future computerisationwslabour market outcomes,
with the primary objective of analysing the number of jobs at risk and
the relationship between an occupation’s probability of computerisation,
wages and educational attainment. According to our estimates, about 47
percent of totaus employment is at risk. We further provide evidence
that wages and educational attainment exhibit a strong negative relation-
ship with an occupation’s probability of computerisation.
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I. INTRODUCTION

In this paper, we address the question: how susceptiblebsd¢g computerisa-
tion? Doing so, we build on the existing literature in two wa¥irst, drawing
upon recent advances in Machine Learning  and Mobile Robotics\R),
we develop a novel methodology to categorise occupatiocsrding to their
susceptibility to computerisationSecond, we implement this methodology to
estimate the probability of computerisation for 702 dethibccupations, and
examine expected impacts of future computerisatiowsfabour market out-
comes.

Our paper is motivated by John Maynard Keynes’s frequeritidgredic-
tion of widespread technological unemployment “due to escavery of means
of economising the use of labour outrunning the pace at wliechan find new
uses for labour” (Keynes, 1933, p. 3). Indeed, over the pasddes, computers
have substituted for a number of jobs, including the fumdiof bookkeepers,
cashiers and telephone operators (Bresnahan, 18992013). More recently,
the poor performance of labour markets across advanceagtes has inten-
sified the debate about technological unemployment amomgpeaists. While
there is ongoing disagreement about the driving forcesngethie persistently
high unemployment rates, a number of scholars have poirtedraputer-
controlled equipment as a possible explanation for readess growth (see,
for example, Brynjolfsson and McAfee, 2014).

The impact of computerisation on labour market outcome®lsestablished
in the literature, documenting the decline of employmentoatine intensive
occupations +e. occupations mainly consisting of tasks following well-defi
procedures that can easily be performed by sophisticageditdms. For exam-
ple, studies by Charlest al. (2013) and Jaimovich and Siu (2012) emphasise
that the ongoing decline in manufacturing employment aeddisappearance
of other routine jobs is causing the current low rates of eympent® In ad-

I\We refer to computerisation as job automation by means ofpcen-controlled equip-
ment.

2This view finds support in a recent survey by the McKinsey @ldbstitute (1G1), showing
that 44 percent of firms which reduced their headcount sinedihancial crisis of 2008 had
done so by means of automationdl1, 2011).

3Because the core job tasks of manufacturing occupatiofmsafalell-defined repetitive
procedures, they can easily be codified in computer softasadethus performed by computers
(Acemoglu and Autor, 2011).



dition to the computerisation of routine manufacturingktgsAutor and Dorn
(2013) document a structural shift in the labour markethwibrkers reallo-
cating their labour supply from middle-income manufactgrio low-income
service occupations. Arguably, this is because the maasias of service occu-
pations are less susceptible to computerisation, as tlogyresa higher degree
of flexibility and physical adaptability (Autoget al, 2003; Goos and Manning,
2007; Autor and Dorn, 2013).

At the same time, with falling prices of computing, problewiving skills
are becoming relatively productive, explaining the sufiséhemployment growth
in occupations involving cognitive tasks where skilleddabhas a comparative
advantage, as well as the persistent increase in returrdutagon (Katz and
Murphy, 1992; Acemoglu, 2002; Autor and Dorn, 2013). Thie titousy and
Lovely Jobs”, of recent work by Goos and Manning (2007), tbaigtures the
essence of the current trend towards labour market potemgavith growing
employment in high-income cognitive jobs and low-incomenme occupa-
tions, accompanied by a hollowing-out of middle-incometirmaijobs.

According to Brynjolfsson and McAfee (2011), the pace of tesbgi-
cal innovation is still increasing, with more sophistichwoftware technolo-
gies disrupting labour markets by making workers redund@fitat is striking
about the examples in their book is that computerisatioriknger confined
to routine manufacturing tasks. The autonomous drivedass, developed by
Google, provide one example of how manual tasks in transpudtlogistics
may soon be automated. In the section “In Domain After Dom&omput-
ers Race Ahead”, they emphasise how fast moving these dewvefdp have
been. Less than ten years ago, in the chapter “Why PeopléVititer”, Levy
and Murnane (2004) pointed at the difficulties of replicgtiuman perception,
asserting that driving in traffic is insusceptible to auttiora “But execut-
ing a left turn against oncoming traffic involves so many desthat it is hard
to imagine discovering the set of rules that can replicateneeids behaviour
[...]". Six years later, in October 2010, Google announdeat tt had modi-
fied several Toyota Priuses to be fully autonomous (Bryrgolfisand McAfee,
2011).

To our knowledge, no study has yet quantified what recentt@olgical
progress is likely to mean for the future of employment. Thespnt study
intends to bridge this gap in the literature. Although there indeed existing
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useful frameworks for examining the impact of computerstandccupational
employment composition, they seem inadequate in explgitiie impact of
technological trends going beyond the computerisatiomofime tasks. Semi-
nal work by Autor,et al. (2003), for example, distinguishes between cognitive
and manual tasks on the one hand, and routine and non-rdaske on the
other. While the computer substitution for both cognitivel amanual routine
tasks is evident, non-routine tasks involve everythingnftegal writing, truck
driving and medical diagnoses, to persuading and sellmghd present study,
we will argue that legal writing and truck driving will soor lautomated, while
persuading, for instance, will not. Drawing upon recentalie@gments in En-
gineering Sciences, and in particular advances in the fafldsL, including
Data Mining, Machine Vision, Computational Statistics arigen sub-fields of
Artificial Intelligence, as well asR, we derive additional dimensions required
to understand the susceptibility of jobs to computerisatibleedless to say,
a number of factors are driving decisions to automate andameat capture
these in full. Rather we aim, from a technological capabt#itpoint of view,
to determine which problems engineers need to solve forifspeccupations
to be automated. By highlighting these problems, their diffjcand to which
occupations they relate, we categorise jobs accordingetio shisceptibility to
computerisation. The characteristics of these problenre weatched to dif-
ferent occupational characteristics, usmgNET data, allowing us to examine
the future direction of technological change in terms ofritpact on the occu-
pational composition of the labour market, but also the nemab jobs at risk
should these technologies materialise.

The present study relates to two literatures. First, oulyarsabuilds on the
labour economics literature on the task content of empleyri®utor, et al,,
2003; Goos and Manning, 2007; Autor and Dorn, 2013). Basededimedtl
premises about what computers do, this literature exantireehistorical im-
pact of computerisation on the occupational compositiotheflabour mar-
ket. However, the scope of what computers do has recentlgnelqul, and
will inevitably continue to do so (Brynjolfsson and McAfed1; mGlI, 2013).
Drawing upon recent progress ML, we expand the premises about the tasks
computers are and will be suited to accomplish. Doing so, wild on the task
content literature in a forward-looking manner. Furtherepavhereas this liter-
ature has largely focused on task measures from the Dicti@i®ccupational
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Titles (DOT), last revised in 1991, we rely on the 2010 version ofblea suc-
cesso*NET — an online service developed for the Department of Labdt.
Accordingly, 0oxNET has the advantage of providing more recent information
on occupational work activities.

Second, our study relates to the literature examining tfehofing of inf-
ormation-based tasks to foreign worksites (Jensen anad&tle2005; Blinder,
2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinder angder, 2013).
This literature consists of different methodologies tokramd categorise oc-
cupations according to their susceptibility to offshoringor example, using
OxNET data on the nature of work done in different occupations,d&in(2009)
estimates that 22 to 29 percentus jobs are or will be offshorable in the next
decade or two. These estimates are based on two definingtdréstics of jobs
that cannot be offshored: (a) the job must be performed a¢efspwork loca-
tion; and (b) the job requires face-to-face personal comaation. Naturally,
the characteristics of occupations that can be offshoredlifflerent from the
characteristics of occupations that can be automated.Xaon@e, the work of
cashiers, which has largely been substituted by self- seteichnology, must
be performed at specific work location and requires fackte-contact. The
extent of computerisation is therefore likely to go beyohdttof offshoring.
Hence, while the implementation of our methodology is samib that of Blin-
der (2009), we rely on different occupational charactesst

The remainder of this paper is structured as follows. IniSedL, we review
the literature on the historical relationship between netbgical progress and
employment. Section Ill describes recent and expecteddutrchnological
developments. In Section IV, we describe our methodologg,ia Section V,
we examine the expected impact of these technological dewednts on labour
market outcomes. Finally, in Section VI, we derive some tasions.

[1. A HISTORY OF TECHNOLOGICAL REVOLUTIONS AND EMPLOYMENT

The concern over technological unemployment is hardly armeghenomenon.
Throughout history, the process of creative destructiolipwing technolog-
ical inventions, has created enormous wealth, but alsosimededisruptions.
As stressed by Schumpeter (1962), it was not the lack of tiweerdeas that

4An exception is Goosst al. (2009).



set the boundaries for economic development, but ratheegoiwsocial and
economic interests promoting the technological status guus is nicely il-
lustrated by the example of William Lee, inventing the stogkirame knitting
machine in 1589, hoping that it would relieve workers of h&ndting. Seek-
ing patent protection for his invention, he travelled to don where he had
rented a building for his machine to be viewed by Queen Eé#alh. To his
disappointment, the Queen was more concerned with the gmplat impact
of his invention and refused to grant him a patent, claimiag:t“Thou aimest
high, Master Lee. Consider thou what the invention could dmygoor sub-
jects. It would assuredly bring to them ruin by deprivingrthef employment,
thus making them beggars” (cited in Acemoglu and Robinsoh220. 182f).
Most likely the Queen’s concern was a manifestation of thedre’ guilds fear
that the invention would make the skills of its artisan merslmbsoleté. The
guilds’ opposition was indeed so intense that William Led twaleave Britain.

That guilds systematically tried to weaken market forceagggegators to
maintain the technological status quo is persuasivelyeatday Kellenbenz
(1974, p. 243), stating that “guilds defended the interesttheir members
against outsiders, and these included the inventors whhb,their new equip-
ment and techniques, threatened to disturb their membeosicenic status?®
As pointed out by Mokyr (1998, p. 11): “Unless all individaahccept the
“verdict” of the market outcome, the decision whether togdin innovation
is likely to be resisted by losers through non-market meisnamnd political
activism.” Workers can thus be expected to resist new tdolgres, insofar that
they make their skills obsolete and irreversibly reducér tgected earnings.
The balance between job conservation and technologicgress therefore, to
a large extent, reflects the balance of power in society, awd dains from
technological progress are being distributed.

The British Industrial Revolution illustrates this point idly. While still
widely present on the Continent, the craft guild in Britain hiag the time of

5The term artisan refers to a craftsman who engages in thesgmduction process of a
good, containing almost no division of labour. By guild weanen association of artisans that
control the practice of their craft in a particular town.

5There is an ongoing debate about the technological rolesofttilds. Epstein (1998), for
example, has argued that they fulfilled an important rol@@intergenerational transmission of
knowledge. Yet there is no immediate contradiction betwseerh a role and their conservative
stand on technological progress: there are clear exampigslds restraining the diffusion of
inventions (see, for example, Ogilvie, 2004).



the Glorious Revolution of 1688, declined and lost most opitfitical clout
(Nef, 1957, pp. 26 and 32). With Parliamentary supremacgbdished over
the Crown, legislation was passed in 1769 making the deg&iruct machinery
punishable by death (Mokyr, 1990, p. 257). To be sure, thearestill resistance
to mechanisation. The “Luddite” riots between 1811 and 1®&&ée partly a
manifestation of the fear of technological change amondgensras Parliament
revoked a 1551 law prohibiting the use of gig mills in the wénlshing trade.
The British government however took an increasingly steewvon groups
attempting to halt technological progress and deployedd®men against the
rioters (Mantoux, 2006, p. 403-8). The sentiment of the gaveent towards
the destruction of machinery was explained by a resolut@assed after the
Lancashire riots of 1779, stating that: “The sole cause e&griots was the
new machines employed in cotton manufacture; the counttyitistanding
has greatly benefited from their erection [and] destroyivent in this country
would only be the means of transferring them to another [to the detriment
of the trade of Britain” (cited in Mantoux, 2006, p. 403).

There are at least two possible explanations for the shéttitudes towards
technological progress. First, after Parliamentary smaey was established
over the Crown, the property owning classes became politicaiminant in
Britain (North and Weingast, 1989). Because the diffusionasfous manufac-
turing technologies did not impose a risk to the value ofrthssets, and some
property owners stood to benefit from the export of manufadoods, the
artisans simply did not have the political power to représsit. Second, in-
ventors, consumers and unskilled factory workers largehefited from mech-
anisation (Mokyr, 1990, p. 256 and 258). It has even beenrearthat, despite
the employment concerns over mechanisation, unskille@tevethave been the
greatest beneficiaries of the Industrial Revolution (ClafiQ8). While there

"Various estimations of the living standards of workers iitd@n during the industrialisation
exist in the literature. For example, Clark (2008) finds tieal wages over the period 1760 to
1860 rose faster tha@bpr per capita. Further evidence provided by Lindert and Wiikan
(1983) even suggests that real wages nearly doubled betl®®&and 1850. Feinstein (1998),
on the other hand, finds a much more moderate increase, wetlags working-class living
standards improving by less than 15 percent between 1770&r@ Finally, Allen (2009a)
finds that over the first half of the nineteenth century, tted weage stagnated while output per
worker expanded. After the mid nineteenth century, howeeal wages began to grow in line
with productivity. While this implies that capital owners rgehe greatest beneficiaries of the
Industrial Revolution, there is at the same time consermrtsatverage living standards largely
improved.



is contradictory evidence suggesting that capital ownatmily accumulated
a growing share of national income (Allen, 2009a), theregisadly evidence
of growing real wages (Lindert and Williamson, 1983; Feanst 1998). This
implies that although manufacturing technologies madesiks of artisans
obsolete, gains from technological progress were dideiin a manner that
gradually benefited a growing share of the labour férce.

An important feature of nineteenth century manufacturgxhhologies is
that they were largely “deskilling” +e. they substituted for skills through the
simplification of tasks (Braverman, 1974; Hounshell, 198#5nds and Skinner,
1985; Goldin and Katz, 1998). The deskilling process o@lias the factory
system began to displace the artisan shop, and it picked cg g& produc-
tion increasingly mechanized with the adoption of steameyo{&oldin and
Sokoloff, 1982; Atacket al., 2008). Work that had previously been performed
by artisans was now decomposed into smaller, highly spsedl sequences,
requiring less skill, but more workers, to perfoPmSome innovations were
even designed to be deskilling. For example, Eli Whitney,aan@er of inter-
changeable parts, described the objective of this techgahs “to substitute
correct and effective operations of machinery for the siithe artist which is
acquired only by long practice and experience; a speciekilbfadich is not
possessed in this country to any considerable extent” (Kalka 1962, p. 22).

Together with developments in continuous-flow productergbling work-
ers to be stationary while different tasks were moved to thiewas identical in-
terchangeable parts that allowed complex products to mrdded from mass
produced individual components by using highly specidligeachine tools to

8The term skill is associated with higher levels of educataility, or job training. Follow-
ing Goldin and Katz (1998), we refer to technology-skill apital-skill complementarity when
a new technology or physical capital complements skilleda relative to unskilled workers.

9The production of plows nicely illustrates the differenbesween the artisan shop and the
factory. In one artisan shop, two men spent 118 man-hourggusmmers, anvils, chisels,
hatchets, axes, mallets, shaves and augers in 11 distiecatagns to produce a plow. By
contrast, a mechanized plow factory employed 52 workerfopaimg 97 distinct tasks, of
which 72 were assisted by steam power, to produce a plow 13jidS man-hours. The degree
of specialization was even greater in the production of syeufiiite muslin shirts. In the artisan
shop, one worker spent 1439 hours performing 25 differesitstéo produce 144 shirts. In the
factory, it took 188 man-hours to produce the same quarmtitgaging 230 different workers
performing 39 different tasks, of which more than half regdisteam power. The workers
involved included cutters, turners and trimmers, as weibemmen and forewomen, inspectors,
errand boys, an engineer, a fireman, and a watchmaDépartment of Labor, 1899).



a sequence of operatiots.Yet while the first assembly-line was documented
in 1804, it was not until the late nineteenth century thatticmrous-flow pro-
cesses started to be adopted on a larger scale, which emalppedations such
as the Ford Motor Company to manufacture the T-Ford at a serftigi low
price for it to become the people’s vehicle (Mokyr, 1990, 871 Crucially,
the new assembly line introduced by Ford in 1913 was speltyfidasigned for
machinery to be operated by unskilled workers (Hounsh8851 p. 239). Fur-
thermore, what had previously been a one-man job was turntedai29-man
worker operation, reducing the overall work time by 34 pat¢8right, 1958).
The example of the Ford Motor Company thus underlines thergepattern
observed in the nineteenth century, with physical capitaviging a relative
complement to unskilled labour, while substituting foratelely skilled arti-
sans (James and Skinner, 1985; Louis and Paterson, 1986nBiraivPhilips,
1986; Atacket al, 2004)!! Hence, as pointed out by Acemoglu (2002, p. 7):
“the idea that technological advances favor more skilledkers is a twentieth
century phenomenon.” The conventional wisdom among ecanbistorians,
in other words, suggests a discontinuity between the remétteand twentieth
century in the impact of capital deepening on the relativealed for skilled
labour.

The modern pattern of capital-skill complementarity gr@fjuemerged in
the late nineteenth century, as manufacturing productidtesl to increasingly
mechanised assembly lines. This shift can be traced to thelsio electricity
from steam and water-power which, in combination with cambus-process

10These machines were sequentially implemented until theymtion process was com-
pleted. Over time, such machines became much cheapevediatskilled labor. As a result,
production became much more capital intensive (Hounsh@ls).

Hwilliamson and Lindert (1980), on the other hand, find a iedatise in wage premium of
skilled labour over the period 1820 to 1860, which they paattribute to capital deepening.
Their claim of growing wage inequality over this period haswever, been challenged (Margo,
2000). Yet seen over the long-run, a more refined explanaitmt the manufacturing share
of the labour force in the nineteenth century hollowed otiisTs suggested by recent findings,
revealing a decline of middle-skill artisan jobs in favofiboth high-skill white collar workers
and low-skill operatives (Gray, 2013; Katz and Margo, 201R)rthermore, even if the share
of operatives was increasing due to organizational charigeérwmanufacturing and overall
manufacturing growth, it does not follow that the share ofkilled labor was rising in the
aggregate economy, because some of the growth in the shamendtives may have come
at the expense of a decrease in the share of workers empleyedrakilled farm workers in
agriculture (Katz and Margo, 2013). Nevertheless, thidente is consistent with the literature
showing that relatively skilled artisans were replaced bgkilled factory workers, suggesting
that technological change in manufacturing was deskilling



and batch production methods, reduced the demand for letskilanual work-
ers in many hauling, conveying, and assembly tasks, but@sed the demand
for skills (Goldin and Katz, 1998). In short, while factorgsmbly lines, with
their extreme division of labour, had required vast quaagibof human opera-
tives, electrification allowed many stages of the producpoocess to be au-
tomated, which in turn increased the demand for relativiijesl blue-collar
production workers to operate the machinery. In additidectafication con-
tributed to a growing share of white-collar nonproducticorkers (Goldin and
Katz, 1998). Over the course of the nineteenth centurybbsitements became
larger in size as steam and water power technologies imgr@aiewing them
to adopt powered machinery to realize productivity gaimsugh the combina-
tion of enhanced division of labour and higher capital istgn(Atack, et al.,
2008&). Furthermore, the transport revolution lowered costshgd@ng goods
domestically and internationally as infrastructure sgraad improved (Atack,
et al,, 2008). The market for artisan goods early on had largely been medfi
to the immediate surrounding area because transport cestshigh relative to
the value of the goods produced. With the transport revattiowever, market
size expanded, thereby eroding local monopoly power, wini¢trrn increased
competition and compelled firms to raise productivity tliglbbumechanisation.
As establishments became larger and served geographespaiynded markets,
managerial tasks increased in number and complexity, iegunore manage-
rial and clerking employees (Chandler, 1977). This patteais, vy the turn of
the twentieth century, reinforced by electrification, whitot only contributed
to a growing share of relatively skilled blue-collar labdout also increased the
demand for white-collar workers (Goldin and Katz, 1998)ovianded to have
higher educational attainment (Allen, 200%).

Since electrification, the story of the twentieth centuryg haen the race be-
tween education and technology (Goldin and Katz, 2009). d$kigh school
movement coincided with the first industrial revolution b&toffice (Goldin
and Katz, 1995). While the typewriter was invented in the E3@0vas not in-
troduced in the office until the early twentieth century, wiiteentered a wave

2Most likely, the growing share of white-collar workers isased the element of human
interaction in employment. Notably, Michaekst al. (2013) find that the increase in the em-
ployment share of interactive occupations, going hand imdiveith an increase in their relative
wage bill share, was particularly strong between 1880 arg8D,1@hich is a period of rapid
change in communication and transport technology.
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of mechanisation, with dictaphones, calculators, mimeohimes, address ma-
chines, and the predecessor of the computer — the keypuncligBe1986;
Cortada, 2000). Importantly, these office machines redurweddst of inform-
ation processing tasks and increased the demand for thdeomptary factor —
i.e. educated office workers. Yet the increased supply of eddadfee work-
ers, following the high school movement, was associateld agharp decline
in the wage premium of clerking occupations relative to picithn workers
(Goldin and Katz, 1995). This was, however, not the resutteskilling tech-
nological change. Clerking workers were indeed relativelycated. Rather, it
was the result of the supply of educated workers outpaciegémand for their
skills, leading educational wage differentials to compres

While educational wage differentials in tbhes narrowed from 1915 to 1980
(Goldin and Katz, 2009), both educational wage differdsigend overall wage
inequality have increased sharply since the 1980s in a nuwibeountries
(Krueger, 1993; Murphyet al,, 1998; Atkinson, 2008; Goldin and Katz, 2009).
Although there are clearly several variables at work, cossg is broad that
this can be ascribed to an acceleration in capital-skill glementarity, driven
by the adoption of computers and information technologyéger, 1993; Au-
tor, et al, 1998; Bresnaharet al., 2002). What is commonly referred to as the
Computer Revolution began with the first commercial uses ofedgars around
1960 and continued through the development of the Intermeéteacommerce
in the 1990s. As the cost per computation declined at an danaeage of 37
percent between 1945 and 1980 (Nordhaus, 2007), telephmsrators were
made redundant, the first industrial robot was introducedbyeral Motors
in the 1960s, and in the 1970s airline reservations systechthe way in self-
service technology (Gordon, 2012). During the 1980s and498omputing
costs declined even more rapidly, on average by 64 perceepe accompa-
nied by a surge in computational power (Nordhaus, 26®2X the same time,
bar-code scanners and cash machines were spreading dwrassatl and fi-
nancial industries, and the first personal computers wéredaced in the early
1980s, with their word processing and spreadsheet furcgbminating copy
typist occupations and allowing repetitive calculatioae automated (Gor-
don, 2012). This substitution for labour marks a further amant reversal.

3Computer power even increased 18 percent faster on annsa than predicted by
Moore’s Law, implying a doubling every two years (Nordha2@07).
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The early twentieth century office machines increased theade for clerking
workers (Chandler, 1977; Goldin and Katz, 1995). In a simi@nner, com-
puterisation augments demand for such tasks, but it alsoifgethem to be
automated (Autoret al,, 2003).

The Computer Revolution can go some way in explaining the grgwiage
inequality of the past decades. For example, Krueger (188833 that work-
ers using a computer earn roughly earn 10 to 15 percent maredtners, but
also that computer use accounts for a substantial shareeahthease in the
rate of return to education. In addition, more recent swtire that computers
have caused a shift in the occupational structure of theulabwrket. Autor
and Dorn (2013), for example, show that as computerisatiodes wages for
labour performing routine tasks, workers will reallocdteit labour supply to
relatively low-skill service occupations. More speciflgabetween 1980 and
2005, the share afis labour hours in service occupations grew by 30 percent
after having been flat or declining in the three prior decaéesthermore, net
changes irus employment were U-shaped in skill level, meaning that te lo
est and highest job-skill quartile expanded sharply wilatnee employment
declines in the middle of the distribution.

The expansion in high-skill employment can be explainedHgy falling
price of carrying out routine tasks by means of computerschvbomplements
more abstract and creative services. Seen from a productnation perspec-
tive, an outward shift in the supply of routine informatibmgputs increases the
marginal productivity of workers they are demanded by. Famneple, text and
data mining has improved the quality of legal research astenh access to
market information has improved the efficiency of manadekeaision-making
—i.e. tasks performed by skilled workers at the higher end of ticenme dis-
tribution. The result has been an increasingly polarisbdua market, with
growing employment in high-income cognitive jobs and lowweme manual
occupations, accompanied by a hollowing-out of middleeme routine jobs.
This is a pattern that is not unique to the and equally applies to a number of
developed economies (Goaeg,al., 2009)**

4While there is broad consensus that computers substitutingdrkers in routine-intensive
tasks has driven labour market polarisation over the pastds, there are, indeed, alternative
explanations. For example, technological advances in atingphave dramatically lowered the
cost of leaving information-based tasks to foreign wodss{lensen and Kletzer, 2005; Blinder,
2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinderkamgger, 2013). The decline in
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How technological progress in the twenty-first century wipact on labour
market outcomes remains to be seen. Throughout histohntéagical progress
has vastly shifted the composition of employment, from agdture and the
artisan shop, to manufacturing and clerking, to service rmadagement oc-
cupations. Yet the concern over technological unemployrhas proven to
be exaggerated. The obvious reason why this concern has atetiatised
relates to Ricardo’s famous chapter on machinery, whichestgghat labour-
saving technology reduces the demand for undifferentiatealr, thus leading
to technological unemployment (Ricardo, 1819). As econtsiave long un-
derstood, however, an invention that replaces workers bghmas will have
effects on all product and factor markets. An increase ireffieiency of pro-
duction which reduces the price of one good, will increas# mcome and
thus increase demand for other goods. Hence, in short, déagyinal progress
has two competing effects on employment (Aghion and How@94). First, as
technology substitutes for labour, there is a destructif@te requiring workers
to reallocate their labour supply; and second, there isdpéalisation effect, as
more companies enter industries where productivity igively high, leading
employment in those industries to expand.

Although the capitalisation effect has been predominasiiohically, our
discovery of means of economising the use of labour can outre pace at
which we can find new uses for labour, as Keynes (1933) pomiédT he rea-
son why human labour has prevailed relates to its abilitydimpa and acquire
new skills by means of education (Goldin and Katz, 2009).aéstomputerisa-
tion enters more cognitive domains this will become indreglg challenging
(Brynjolfsson and McAfee, 2011). Recent empirical findings thierefore par-
ticularly concerning. For example, Beaudey,al. (2013) document a decline
in the demand for skill over the past decade, even as theysaopplorkers with
higher education has continued to grow. They show that biglled work-
ers have moved down the occupational ladder, taking on jalogibnally per-
formed by low-skilled workers, pushing low-skilled workezven further down
the occupational ladder and, to some extent, even out ol force. This

the routine-intensity of employment is thus likely to resubm a combination of offshoring
and automation. Furthermore, there is evidence suggdsigtigmprovements in transport and
communication technology have augmented occupationdvingphuman interaction, span-
ning across both cognitive and manual tasks (Michaalg), 2013). These explanations are
nevertheless equally related to advance in computing amiintmications technology.
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raises questions about: (a) the ability of human labour totive race against
technology by means of education; and (b) the potentiaingéxittechnologi-

cal unemployment, as an increasing pace of technologicgress will cause
higher job turnover, resulting in a higher natural rate oémployment (Lucas
and Prescott, 1974; Davis and Haltiwanger, 1992; Pissark0). While the
present study is limited to examining the destruction eftgctechnology, it

nevertheless provides a useful indication of the job grawtuired to counter-
balance the jobs at risk over the next decades.

[11. THE TECHNOLOGICAL REVOLUTIONS OF THE TWENTYFIRST CENTURY

The secular price decline in the real cost of computing haated vast eco-
nomic incentives for employers to substitute labour for pater capital® Yet
the tasks computers are able to perform ultimately depeod tige ability of
a programmer to write a set of procedures or rules that apigtefy direct the
technology in each possible contingency. Computers witkttoee be relatively
productive to human labour when a problem can be specifiedheigense that
the criteria for success are quantifiable and can readilydleated (Acemoglu
and Autor, 2011). The extent of job computerisation willgthe determined
by technological advances that allow engineering problemse sufficiently
specified, which sets the boundaries for the scope of comgatien. In this
section, we examine the extent of tasks computer-conttr@égiipment can be
expected to perform over the next decades. Doing so, we focuslvances
in fields related to Machine Learning(), including Data Mining, Machine
Vision, Computational Statistics and other sub-fields offisral Intelligence
(A1), in which efforts are explicitly dedicated to the develarhof algorithms
that allow cognitive tasks to be automated. In addition, weng@ne the ap-
plication of ML technologies in Mobile Robotics/R), and thus the extent of
computerisation in manual tasks.

Our analysis builds on the task categorisation of Augbgl. (2003), which
distinguishes between workplace tasks using a two-by-tatir) with routine
versus non-routine tasks on one axis, and manual versu#igegasks on the
other. In short, routine tasks are defined as tasks thatfahplicit rules that

S\We refer to computer capital as accumulated computers amgui@r-controlled equip-
ment by means of capital deepening.
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can be accomplished by machines, while non-routine taskaatrsufficiently
well understood to be specified in computer code. Each oftlesk cate-
gories can, in turn, be of either manual or cognitive nature ~they relate to
physical labour or knowledge work. Historically, compugation has largely
been confined to manual and cognitive routine tasks invghérplicit rule-
based activities (Autor and Dorn, 2013; Goesal,, 2009). Following recent
technological advances, however, computerisation is mpoeesling to domains
commonly defined as non-routine. The rapid pace at whiclstdek were de-
fined as non-routine only a decade ago have now become corspbte is
illustrated by Autorget al. (2003), asserting that: “Navigating a car through city
traffic or deciphering the scrawled handwriting on a perschack — minor
undertakings for most adults — are not routine tasks by ofimitden.” Today,
the problems of navigating a car and deciphering handwriire sufficiently
well understood that many related tasks can be specifiedmpater code and
automated (Verest al,, 2011; PI6tz and Fink, 2009).

Recent technological breakthroughs are, in large part, @eédrts to turn
non-routine tasks into well-defined problems. Defining quablems is helped
by the provision of relevant data: this is highlighted in tdase of handwriting
recognition by Pl6tz and Fink (2009). The success of an dlgarfor hand-
writing recognition is difficult to quantify without data test on — in particular,
determining whether an algorithm performs well for diffieretyles of writ-
ing requires data containing a variety of such styles. Téatlata is required
to specify the many contingencies a technology must mamageder to form
an adequate substitute for human labour. With data, olgeatid quantifiable
measures of the success of an algorithm can be produced) widithe contin-
ual improvement of its performance relative to humans.

As such, technological progress has been aided by the rpoeddction
of increasingly large and complex datasets, known as big'@idor instance,
with a growing corpus of human-translated digitalised ,tétxe success of a
machine translator can now be judged by its accuracy in demiag observed
translations. Data from United Nations documents, whiehtienslated by hu-

%predictions by Cisco Systems suggest that the Interndictiaf2016 will be around 1
zettabyte { x 102! bytes) (Cisco, 2012). In comparison, the information cio@d in all books
worldwide is about 480 terabytes & 10'* bytes), and a text transcript of all the words ever
spoken by humans would represent about 5 exabgtesi('® bytes) (UC Berkeley School of
Information, 2003).
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man experts into six languages, allow Google Translate taitmoand improve
the performance of different machine translation algongi{Tanner, 2007).
Further,mL algorithms can discover unexpected similarities betwddn o

and new data, aiding the computerisation of tasks for whigluata has newly
become available. As a result, computerisation is no locgefined to rou-
tine tasks that can be written as rule-based software g is spreading
to every non-routine task where big data becomes avail@wimjolfsson and
McAfee, 2011). In this section, we examine the extent of ieittomputerisa-
tion beyond routine tasks.

[lI.LA.  Computerisation in non-routine cognitive tasks

With the availability of big data, a wide range of non-ro@tiocognitive tasks
are becoming computerisable. That is, further to the gémagovement in
technological progress due to big data, algorithms for big@re rapidly enter-
ing domains reliant upon storing or accessing informatidme use of big data
is afforded by one of the chief comparative advantages ofptiens relative
to human labor: scalability. Little evidence is requiredd@monstrate that, in
performing the task of laborious computation, networks athines scale bet-
ter than human labour (Campbell-Kelly, 2009). As such, caensucan better
manage the large calculations required in using large eistagL algorithms
running on computers are now, in many cases, better able¢gtdetterns in
big data than humans.

Computerisation of cognitive tasks is also aided by anotbex compara-
tive advantage of algorithms: their absence of some humasebi An algo-
rithm can be designed to ruthlessly satisfy the small rarigasis it is given.
Humans, in contrast, must fulfill a range of tasks unrelatetthé¢ir occupation,
such as sleeping, necessitating occasional sacrificegindbcupational per-
formance (Kahnemaret al, 1982). The additional constraints under which
humans must operate manifest themselves as biases. Coasidgample of
human bias: Danzigeet al.(2011) demonstrate that experienced Israeli judges
are substantially more generous in their rulings followaniginch break. It can
thus be argued that many roles involving decision-makinll lvanefit from
impartial algorithmic solutions.

Fraud detection is a task that requires both impartial dectisiaking and
the ability to detect trends in big data. As such, this taskow almost com-
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pletely automated (Phuat al, 2010). In a similar manner, the comparative
advantages of computers are likely to change the nature 1 agyoss a wide
range of industries and occupations.

In health care, diagnostics tasks are already being comgede Oncolo-
gists at Memorial Sloan-Kettering Cancer Center are, for @@nusingiBM’s
Watson computer to provide chronic care and cancer tredtoiagnostics.
Knowledge from 600,000 medical evidence reports, 1.5 amilpatient records
and clinical trials, and two million pages of text from mealipurnals, are used
for benchmarking and pattern recognition purposes. Tlhisvalthe computer
to compare each patient’s individual symptoms, genetasily and medica-
tion history, etc., to diagnose and develop a treatment piéim the highest
probability of success (Cohn, 2013).

In addition, computerisation is entering the domains o&lemd financial
services. Sophisticated algorithms are gradually takimg mumber of tasks
performed by paralegals, contract and patent lawyers (M&arR011). More
specifically, law firms now rely on computers that can scamishads of legal
briefs and precedents to assist in pre-trial research. duéetly cited exam-
ple is Symantec’s Clearwell system, which uses language/siadb identify
general concepts in documents, can present the resultsigally, and proved
capable of analysing and sorting more than 570,000 documeritvo days
(Markoff, 2011).

Furthermore, the improvement of sensing technology hasrsadsor data
one of the most prominent sources of big data (Ackerman anzzGu2011).
Sensor data is often coupled with new fault- and anomaly-detection algo-
rithms to render many tasks computerisable. A broad clasgahples can be
found in condition monitoring and novelty detection, wi#thnology substi-
tuting for closed-circuitrv (CcTV) operators, workers examining equipment
defects, and clinical staff responsible for monitoring stete of patients in in-
tensive care. Here, the fact that computers lack humansiasé# great value:
algorithms are free of irrational bias, and their vigilameed not be interrupted
by rest breaks or lapses of concentration. Following thémag costs of digi-
tal sensing and actuatiom.. approaches have successfully addressed condition
monitoring applications ranging from batteries (Saétaal., 2007), to aircraft
engines (Kinget al, 2009), water quality (Osbornet al,, 2012) and intensive
care units icus) (Clifford and Clifton, 2012; Cliftonet al,, 2012). Sensors can
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equally be placed on trucks and pallets to improve compasigsply chain
management, and used to measure the moisture in a field of twdapack the
flow of water through utility pipes. This allows for auton@atneter reading,
eliminating the need for personnel to gather such inforomatiFor example,
the cities of Doha, S&o Paulo, and Beijing use sensors on,yoesps, and
other water infrastructure to monitor conditions and ma&nagter loss, reduc-
ing leaks by 40 to 50 percent. In the near future, it will begpole to place inex-
pensive sensors on light poles, sidewalks, and other ppldjgerty to capture
sound and images, likely reducing the number of workerswndaforcement
(MGI, 2013).

Advances in user interfaces also enable computers to rdsgioectly to
a wider range of human requests, thus augmenting the worlgbfyhskilled
labour, while allowing some types of jobs to become fullycswiated. For ex-
ample, Apple’s Siri and Google Now rely on natural user ifstegs to recognise
spoken words, interpret their meanings, and act on thenradiogdy. More-
over, a company called SmartAction now provides call cormpsétion solu-
tions that useiL technology and advanced speech recognition to improve upon
conventional interactive voice response systems, raglispst savings of 60 to
80 percent over an outsourced call center consisting of huataour CAA,
2012). Even education, one of the most labour intensiveosgcivill most
likely be significantly impacted by improved user interfacnd algorithms
building upon big data. The recent growthnmoocs (Massive Open Online
Courses) has begun to generate large datasets detailingthdents interact
on forums, their diligence in completing assignments aeding lectures, and
their ultimate grades (Simonite, 2013; Bresletal., 2013). Such information,
together with improved user interfaces, will allow far. algorithms that serve
as interactive tutors, with teaching and assessment gieeatstatistically cali-
brated to match individual student needs (Woolf, 2010). Bitacanalysis will
also allow for more effective predictions of student pariance, and for their
suitability for post-graduation occupations. These tedbgies can equally be
implemented in recruitment, most likely resulting in theeaimlining of human
resource iR) departments.

Occupations that require subtle judgement are also inciggsusceptible
to computerisation. To many such tasks, the unbiased deaisaking of an al-
gorithm represents a comparative advantage over humaatoperin the most
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challenging or critical applications, as iaus, algorithmic recommendations
may serve as inputs to human operators; in other circumssaradgorithms
will themselves be responsible for appropriate decisi@king. In the finan-
cial sector, such automated decision-making has playetedonquite some
time. Al algorithms are able to process a greater number of finanunaluance-
ments, press releases, and other information than any htrader, and then
act faster upon them (Mims, 2010). Services like Future salvsimilarly use
Al to offer personalised financial advice at larger scale angidaost. Even
the work of software engineers may soon largely be compatele. For ex-
ample, advances inmL allow a programmer to leave complex parameter and
design choices to be appropriately optimised by an algor{tdoos, 2012). Al-
gorithms can further automatically detect bugs in softw&tangal and Lam,
2002; Livshits and Zimmermann, 2005; Kirat al,, 2008), with a reliability
that humans are unlikely to match. Big databases of code #Hidloe eventual
prospect of algorithms that learn how to write programs tisB8especifications
provided by a human. Such an approach is likely to eventualfrove upon
human programmers, in the same way that human-written deragventually
proved inferior to automatically optimised compilers. Agaithm can bet-
ter keep the whole of a program in working memory, and is nostrained to
human-intelligible code, allowing for holistic solutiotfsat might never occur
to a human. Such algorithmic improvements over human juégeare likely
to become increasingly common.

Although the extent of these developments remains to be ssgémates by
MGI (2013) suggests that sophisticated algorithms could sutestor approx-
imately 140 million full-time knowledge workers worldwideHence, while
technological progress throughout economic history hagelhg been confined
to the mechanisation of manual tasks, requiring physidadug technological
progress in the twenty-first century can be expected to ibutér to a wide
range of cognitive tasks, which, until now, have largely aamd a human
domain. Of course, many occupations being affected by tegelopments
are still far from fully computerisable, meaning that thenguterisation of
some tasks will simply free-up time for human labour to perf@ther tasks.
Nonetheless, the trend is clear: computers increasingljesige human labour
in a wide range of cognitive tasks (Brynjolfsson and McAfe&l D).
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[l1.B. Computerisation in non-routine manual tasks

Mobile robotics provides a means of directly leveragwg technologies to
aid the computerisation of a growing scope of manual taskse dontinued
technological development of robotic hardware is havingable impact upon
employment: over the past decades, industrial robots rekenton the rou-
tine tasks of most operatives in manufacturing. Now, howevere advanced
robots are gaining enhanced sensors and manipulatorgjradlahem to per-
form non-routine manual tasks. For example, General Ebdetis recently de-
veloped robots to climb and maintain wind turbines, and nflesable surgical
robots with a greater range of motion will soon perform magyees of opera-
tions (Roboticsvo, 2013). In a similar manner, the computerisation of logssti
is being aided by the increasing cost-effectiveness ofhigistrumented and
computerised cars. Mass-production vehicles, such asiisab.EAF, contain
on-board computers and advanced telecommunication eeuipthat render
the car a potentially fly-by-wire robdt. Advances in sensor technology mean
that vehicles are likely to soon be augmented with even mdvareced suites
of sensors. These will permit an algorithmic vehicle colidrao monitor its
environment to a degree that exceeds the capabilities diaman driver: they
have the ability to simultaneously look both forwards andkveards, can na-
tively integrate cameraPsandLIDAR data, and are not subject to distraction.
Algorithms are thus potentially safer and more effectivgeats than humans.
The big data provided by these improved sensors are offsphgions to
many of the engineering problems that had hindered rob@veldpment in
the past. In particular, the creation of detailed three disrenal maps of road
networks has enabled autonomous vehicle navigation; nmably illustrated
by Google’s use of large, specialised datasets collecteitslgriverless cars
(Guizzo, 2011). It is now completely feasible to store repreaations of the
entire road network on-board a car, dramatically simplifyithe navigation
problem. Algorithms that could perform navigation thronghthe changing
seasons, particularly after snowfall, have been viewed sgbatantial chal-
lenge. However, the big data approach can answer this hngtacords from
the last time snow fell, against which the vehicle’s currentironment can
be compared (Churchill and Newman, 2012)L approaches have also been

1A fly-by-wire robot is a robot that is controllable by a remotamputer.
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developed to identify unprecedented changes to a partipidae of the road
network, such as roadworks (Mathibekt, al, 2012). This emerging tech-
nology will affect a variety of logistics jobs. Agriculturaehicles, forklifts
and cargo-handling vehicles are imminently automatalld,reospitals are al-
ready employing autonomous robots to transport food, pipggms and sam-
ples (Bloss, 2011). The computerisation of mining vehickefurther being
pursued by companies such as Rio Tinto, seeking to replaceidab Aus-
tralian mine-sites?

With improved sensors, robots are capable of producing gyaaith higher
quality and reliability than human labour. For example, EllZ2, a Spanish
food processor, now uses robotics to pick up heads of letiiwe a con-
veyor belt, rejecting heads that do not comply with compaapdards. This
is achieved by measuring their density and replacing thertherbelt (FR,
2012a). Advanced sensors further allow robots to recogragterns. Baxter, a
22,000usD general-purpose robot, provides a well-known example.rdhet
features an.cD display screen displaying a pair of eyes that take on differ-
ent expressions depending on the situation. When the roffiottisnstalled or
needs to learn a new pattern, no programming is required. manuworker
simply guides the robot arms through the motions that wilhbeded for the
task. Baxter then memorises these patterns and can comnauthiaait has un-
derstood its new instructions. While the physical flexiibf Baxter is limited
to performing simple operations such as picking up objeatsraoving them,
different standard attachments can be installed on its,atasving Baxter to
perform a relatively broad scope of manual tasks at low cest (2013).

Technological advances are contributing to declininggimstobotics. Over
the past decades, robot prices have fallen about 10 pencenallly and are ex-
pected to decline at an even faster pace in the near fuagge 2013). Industrial
robots, with features enabled by machine vision and higtipion dexterity,
which typically cost 100,000 to 150,0005D, will be available for 50,000 to
75,000usDin the next decade, with higher levels of intelligence anditamhal
capabilities (FR, 2012b). Declining robot prices will inevitably place them
within reach of more users. For example, in China, employegsirecreas-
ingly incentivised to substitute robots for labour, as waged living standards

18Rio Tinto’s computerisation efforts are advertised at Hitpvw. mineofthefuture.com.au.
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are rising — Foxconn, a Chinese contract manufacturer thptogis 1.2 mil-
lion workers, is now investing in robots to assemble proslsath as the Apple
iPhone (Markoff, 2012). According to the International Estion of Robotics,
robot sales in China grew by more than 50 percent in 2011 anexgexcted to
increase further. Globally, industrial robot sales readneecord 166,000 units
in 2011, a 40 percent year-on-year increas®,(2012b). Most likely, there
will be even faster growth ahead as low-priced general-gagpnodels, such
as Baxter, are adopted in simple manufacturing and servick. wo

Expanding technological capabilities and declining caglismake entirely
new uses for robots possible. Robots will likely continuegiiceton an increas-
ing set of manual tasks in manufacturing, packing, constmcmaintenance,
and agriculture. In addition, robots are already perfogmmany simple ser-
vice tasks such as vacuuming, mopping, lawn mowing, anctigakaning —
the market for personal and household service robots isiggolay about 20
percent annuallyMGI, 2013). Meanwhile, commercial service robots are now
able to perform more complex tasks in food preparation,theare, commer-
cial cleaning, and elderly care (Robotigs; 2013). As robot costs decline and
technological capabilities expand, robots can thus beat&gdeo gradually sub-
stitute for labour in a wide range of low-wage service octigos, where most
usjob growth has occurred over the past decades (Autor and, ROWB). This
means that many low-wage manual jobs that have been préyipusected
from computerisation could diminish over time.

[11.C. The task model revisited

The task model of Autoret al. (2003) has delivered intuitive and accurate
predictions in that: (a) computers are more substitutadidhéiman labour in
routine relative to non-routine tasks; and (b) a greatemisity of routine in-
puts increases the marginal productivity of non-routineuils. Accordingly,
computers have served as a substitute for labour for marnineotasks, while
exhibiting strong complementarities with labour perfangncognitive non-rou-
tine tasks® Yet the premises about what computers do have recently degan
Computer capital can now equally substitute for a wide rarfgiasks com-
monly defined as non-routine (Brynjolfsson and McAfee, 20idganing that

1%The model does not predict any substantial substitutionoonptementarity with non-
routine manual tasks.
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the task model will not hold in predicting the impact of cortgrisation on
the task content of employment in the twenty-first century.iléffocusing on
the substitution effects of recent technological progressbuild on the task
model by deriving several factors that we expect will deiaerthe extent of
computerisation in non-routine tasks.

The task model assumes for tractability an aggregate, aonstturns-to-
scale Cobb-Douglas production function of the form,

1) Q= (Ls+C)"PLYs, Be0,1],

where Ls and Lys are susceptible and non-susceptible labor inputsnsl
computer capital. Computer capital is supplied perfecthsttally at market
price per efficiency unit, where the market price is fallingpgenously with
time due to technological progress. It further assumesni@gmaximizing
workers, with heterogeneous productivity endowments ih sasceptible and
non-susceptible tasks. Their task supply will respondtielaty to relative
wage levels, meaning that workers will reallocate theiolatsupply according
to their comparative advantage as in Roy (1951). With expandomputa-
tional capabilities, resulting from technological advasicand a falling market
price of computing, workers in susceptible tasks will thaallocate to non-
susceptible tasks.

The above described simple model differs from the task motiélutor,
et al. (2003), in thatlys is not confined to routine labour inputs. This is be-
cause recent developmentsnm and MR, building upon big data, allow for
pattern recognition, and thus enable computer capitalgmisasubstitute for
labour across a wide range of non-routine tasks. Yet sombiiimy engineer-
ing bottlenecks to computerisation persist. Beyond thesiéebecks, however,
we argue that it is largely already technologically possiiol automate almost
any task, provided that sufficient amounts of data are gathfer pattern recog-
nition. Our model thus predicts that the pace at which thesielmecks can be
overcome will determine the extent of computerisation mtihenty-first cen-
tury.

Hence, in short, while the task model predicts that comgufier labour
substitution will be confined to routine tasks, our modeldorts that comput-
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erisation can be extended to any non-routine task that isutgéct to any engi-
neering bottlenecks to computerisation. These bottlenduks set the bound-
aries for the computerisation of non-routine tasks. Dragwipon themL and
MR literature, and a workshop held at the Oxford University iBagring Sci-
ences Department, we identify several engineering baitlesy corresponding
to three task categories. According to these findings, nisceptible labor in-
puts can be described as,

n

(2) Lns = Z(LPM,i + Lc; + Lsi;)

=1
where Lpy, Lc and Lg, are labour inputs into perception and manipulation
tasks, creative intelligence tasks, and and social igtatice tasks.

We note that some related engineering bottlenecks can hiallyaallevi-
ated by the simplification of tasks. One generic way of aghgethis is to re-
duce the variation between task iterations. As a protogtgxample, consider
the factory assembly line, turning the non-routine taskhefartisan shop into
repetitive routine tasks performed by unskilled factorykess. A more recent
example is the computerisation of non-routine manual tasknstruction.
On-site construction tasks typically demand a high degfesdaptability, so
as to accommodate work environments that are typicallgidely laid out,
and vary according to weather. Prefabrication, in whichcihrestruction object
is partially assembled in a factory before being transjploitethe construction
site, provides a way of largely removing the requiremengfdaptability. It al-
lows many construction tasks to be performed by robots ucaletrolled con-
ditions that eliminate task variability — a method that isd®ing increasingly
widespread, particularly in Japan (Barlow and Ozaki, 2006né&r and Bock,
2012). The extent of computerisation in the twenty-firstagnwill thus partly
depend on innovative approaches to task restructurindnelinedmainder of this
section we examine the engineering bottlenecks relatdtetaliove mentioned
task categories, each in turn.

Perception and manipulation tasks. Robots are still unable to match the
depth and breadth of human perception. While basic geomeémtification is
reasonably mature, enabled by the rapid development oistaqated sensors
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and lasers, significant challenges remain for more compéeggption tasks,
such as identifying objects and their properties in a dlattdield of view. As
such, tasks that relate to an unstructured work environgemnimake jobs less
susceptible to computerisation. For example, most honeearsstructured, re-
quiring the identification of a plurality of irregular objiscand containing many
cluttered spaces which inhibit the mobility of wheeled alge Conversely, su-
permarkets, factories, warehouses, airports and hositale been designed
for large wheeled objects, making it easier for robots togete in perform-
ing non-routine manual tasks. Perception problems cangberysometimes
be sidestepped by clever task design. For example, KivaBstacquired by
Amazon.com in 2012, solved the problem of warehouse nawvigaty simply
placing bar-code stickers on the floor, informing robotsheirt precise location
(Guizzo, 2008).

The difficulty of perception has ramifications for manipidattasks, and,
in particular, the handling of irregular objects, for whidiots are yet to reach
human levels of aptitude. This has been evidenced in théaj@vent of robots
that interact with human objects and environments. Whileaades have been
made, solutions tend to be unreliable over the myriad sna@ihtions on a sin-
gle task, repeated thousands of times a day, that many apgpiis require. A
related challenge is failure recoveryi.e. identifying and rectifying the mis-
takes of the robot when it has, for example, dropped an abjdtanipula-
tion is also limited by the difficulties of planning out thegsence of actions
required to move an object from one place to another. Thexeyeir further
problems in designing manipulators that, like human linalse,soft, have com-
pliant dynamics and provide useful tactile feedback. Masgustrial manip-
ulation makes uses of workarounds to these challenges (Breival., 2010),
but these approaches are nonetheless limited to a narr@e &frtasks. The
main challenges to robotic computerisation, perceptiahraanipulation, thus
largely remain and are unlikely to be fully resolved in thextn#ecade or two
(Roboticsvo, 2013).

Creative intelligence tasks. The psychological processes underlying human
creativity are difficult to specify. According to Boden (2Q08reativity is the
ability to come up with ideas or artifacts that are novel aaldable. Ideas, in a
broader sense, include concepts, poems, musical congrasiscientific theo-
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ries, cooking recipes and jokes, whereas artifacts aretbgeich as paintings,
sculptures, machinery, and pottery. One process of ceateas (and simi-
larly for artifacts) involves making unfamiliar combinaiis of familiar ideas,
requiring a rich store of knowledge. The challenge here fsxtbsome reliable
means of arriving at combinations that “make sense.” Fonaprder to make a
subtle joke, for example, would require a database withragss of knowledge
comparable to that of humans, and methods of benchmarkenglgforithm'’s
subtlety.

In principle, such creativity is possible and some appreadb creativity
already exist in the literature. Duvenawat,al. (2013) provide an example of
automating the core creative task required in order to perfstatistics, that
of designing models for data. As to artistic creativipaARON, a drawing-
program, has generated thousands of stylistically-siriia-drawings, which
have been exhibited in galleries worldwide. Furthermorayi® Cope’sEMI
software composes music in many different styles, rememisof specific hu-
man Composers.

In these and many other applications, generating novehgtparticularly
difficult. Instead, the principal obstacle to computergsoreativity is stating
our creative values sufficiently clearly that they can beoded in an program
(Boden, 2003). Moreover, human values change over time anda@oss
cultures. Because creativity, by definition, involves ndiarovelty but value,
and because values are highly variable, it follows that memgyments about
creativity are rooted in disagreements about value. Thusn & we could
identify and encode our creative values, to enable the ctenpa inform and
monitor its own activities accordingly, there would sti# bisagreement about
whether the computer appeared to be creative. In the absémregineering
solutions to overcome this problem, it seems unlikely tlcaupations requiring
a high degree of creative intelligence will be automatedhertext decades.

Social intelligence tasks. Human social intelligence is important in a wide
range of work tasks, such as those involving negotiatiorsysesion and care.
To aid the computerisation of such tasks, active researbkirgy undertaken
within the fields of Affective Computing (Scherest al., 2010; Picard, 2010),
and Social Robotics (Ge, 2007; Broekeesal., 2009). While algorithms and
robots can now reproduce some aspects of human socialdtiterathe real-
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time recognition of natural human emotion remains a chgllenproblem, and
the ability to respond intelligently to such inputs is evearendifficult. Even
simplified versions of typical social tasks prove difficudr tcomputers, as is
the case in which social interaction is reduced to pure t€ke social intelli-
gence of algorithms is partly captured by the Turing tesi@ixing the ability
of a machine to communicate indistinguishably from an ddtuaan. Since
1990, the Loebner Prize, an annual Turing test competiaarards prizes to
textual chat programmes that are considered to be the masarniike. In
each competition, a human judge simultaneously holds cteniased textual
interactions with both an algorithm and a human. Based onesgonses, the
judge is to distinguish between the two. Sophisticatedrélyos have so far
failed to convince judges about their human resemblancés i$Hargely be-
cause there is much ‘common sense’ information possesskdrbgins, which
is difficult to articulate, that would need to be provided lgagithms if they are
to function in human social settings.

Whole brain emulation, the scanning, mapping and digitagissf a hu-
man brain, is one possible approach to achieving this, betirisently only a
theoretical technology. For brain emulation to become atp@mnal, additional
functional understanding is required to recognise wha datelevant, as well
as a roadmap of technologies needed to implement it. Whilesaaddmaps ex-
ist, present implementation estimates, under certaimgs$ons, suggest that
whole brain emulation is unlikely to become operationahwithe next decade
or two (Sandberg and Bostrom, 2008). When or if they do, howekierem-
ployment impact is likely to be vast (Hanson, 2001).

Hence, in short, while sophisticated algorithms and deuralents inMR,
building upon with big data, now allow many non-routine &s& be auto-
mated, occupations that involve complex perception andipo&tion tasks,
creative intelligence tasks, and social intelligence gamsle unlikely to be sub-
stituted by computer capital over the next decade or two.probability of an
occupation being automated can thus be described as adnraftihese task
characteristics. As suggested by Figure I, the low degreea#l intelligence
required by a dishwasher makes this occupation more stisiestat computer-
isation than a public relation specialist, for example. Wacped to examining
the susceptibility of jobs to computerisation as a functbthe above described
non-susceptible task characteristics.
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FIGURE |. A sketch of how the probability of computerisation miglatry as a function of
bottleneck variables.

IV. MEASURING THE EMPLOYMENT IMPACT OF COMPUTERISATION

IV.A. Data sources and implementation strategy

To implement the above described methodology, we relpeweT, an online
service developed for thes Department of Labor. The 2010 version@fNET
contains information on 903 detailed occupations, most lotclv correspond
closely to the Labor Department’s Standard Occupationad<ifiaation §0C).
The 0xNET data was initially collected from labour market analystsq &as
since been regularly updated by surveys of each occupsitmorker population
and related experts, to provide up-to-date information ccupations as they
evolve over time. For our purposes, an important feature=ofeT is that it
defines the key features of an occupation as a standardisdadeasurable set
of variables, but also provides open-ended descriptiogpedific tasks to each
occupation. This allows us to: (a) objectively rank occiuga according to
the mix of knowledge, skills, and abilities they requiredaib) subjectively
categorise them based on the variety of tasks they involve.

The closesoc correspondence ab+«NET allows us to link occupational
characteristics to 2010 Bureau of Labor Statist&iss) employment and wage
data. While theoxNET occupational classification is somewhat more detailed,
distinguishing between Auditors and Accountants, for examwe aggregate
these occupations to correspond to the six-digit 260@ system, for which
employment and wage figures are reported. To obtain unGjeET vari-
ables corresponding to the six-digibc classification, we used the mean of
the O«NET aggregate. In addition, we exclude any six-dg@iC occupations
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for which oxNET data was missiné’ Doing so, we end up with a final dataset
consisting of 702 occupations.

To assess the employment impact of the described techalodevel-
opments inML, the ideal experiment would provide two identical autarkic
economies, one facing the expanding technological capabiwe observe,
and a secular decline in the price of computerisation, ardother not. By
comparison, it would be straightforward to examine how cotepsation re-
shapes the occupational composition of the labour markethd absence of
this experiment, the second preferred option would be than the imple-
mentation strategy of Autoet al. (2003), and test a simple economic model
to predict how demand for workplace tasks responds to dpuedots inML
and MR technology. However, because our paper is forward-logkimghe
sense that most of the described technological developnaeatyet to be im-
plemented across industries on a broader scale, this opiemot available for
our purposes.

Instead, our implementation strategy builds on the liteeexamining the
offshoring of information-based tasks to foreign worksjteonsisting of differ-
ent methodologies to rank and categorise occupations @iogoto their sus-
ceptibility to offshoring (Blinder, 2009; Jensen and KletZ005, 2010). The
common denominator for these studies is that they relg-ove T data in differ-
ent ways. While Blinder (2009) eyeballed tbeNET data on each occupation,
paying particular attention to the job description, tasis] work activities, to
assign an admittedly subjective two-digit index numberftstwrability to each
occupation, Jensen and Kletzer (2005) created a purelgtnigeanking based
on standardised and measurabieleT variables. Both approaches have obvi-
ous drawbacks. Subjective judgments are often not repécaid may result in
the researcher subconsciously rigging the data to confoarcertain set of be-
liefs. Objective rankings, on the other hand, are not sulgesuch drawbacks,
but are constrained by the reliability of the variables #ir@tbeing used. At this
stage, it shall be noted thaNET data was not gathered to specifically mea-
sure the offshorability or automatability of jobs. Accargdly, Blinder (2009)

20The missing occupations consist of “All Other” titles, repenting occupations with a
wide range of characteristics which do not fit into one of teadedoxNET-SOCOccupations.
OxNET data is not available for this type of title. We note thet employment for the 702
occupations we considered is 138.44 million. Hence ounaimaéxcluded 4.628 million jobs,
equivalent to 3 percent of total employment.
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finds that past attempts to create objective offshorabygibkings usingp«NET
data have yielded some questionable results, ranking lavey®l judges among
the most tradable occupations, while classifying occapatsuch as data entry
keyers, telephone operators, and billing clerks as vistuadpossible to move
offshore.

To work around some of these drawbacks, we combine and bpdd the
two described approaches. First, together with a groupLofesearchers, we
subjectively hand-labelled 70 occupations, assigning dutbmatable, and O
if not. For our subjective assessments, we draw upon a wopkkkld at the
Oxford University Engineering Sciences Department, exangithe automata-
bility of a wide range of tasks. Our label assignments weset@n eyeballing
the 0xNET tasks and job description of each occupation. This infoionai
particular to each occupation, as opposed to standardisedsadifferent jobs.
The hand-labelling of the occupations was made by answehiegjuestion
“Can the tasks of this job be sufficiently specified, condiiloon the availabil-
ity of big data, to be performed by state of the art computetiolled equip-
ment”. Thus, we only assigned a 1 to fully automatable octaps, where
we considered all tasks to be automatable. To the best of mwlkdge, we
considered the possibility of task simplification, posgiallowing some cur-
rently non-automatable tasks to be automated. Labels vgsigreed only to
the occupations about which we were most confident.

Second, we use objectivexNET variables corresponding to the defined
bottlenecks to computerisation. More specifically, we aterested in vari-
ables describing the level of perception and manipulatoggtivity, and social
intelligence required to perform it. As reported in Tableve identified nine
variables that describe these attributes. These varia®es derived from the
OxNET survey, where the respondents are given multiple scaléls,“wmpor-
tance” and “level” as the predominant pair. We rely on the@élérating which
corresponds to specific examples about the capabilitiasrestjof computer-
controlled equipment to perform the tasks of an occupatfeor. instance, in
relation to the attribute “Manual Dexterity”, low (levelpaesponds to “Screw
a light bulb into a light socket”; medium (level) is exempii by “Pack or-
anges in crates as quickly as possible”; high (level) is dlesd as “Perform
open-heart surgery with surgical instruments”. This givesan indication of
the level of “Manual Dexterity” computer-controlled eqmpnt would require
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TABLE |. OxNET variables that serve as indicators of bottlenecks to coensation.

Computerisation OxNET Variable OxNET Description
bottleneck
Perception Finger The ability to make precisely coordinated movements of
and Dexterity the fingers of one or both hands to grasp, manipulate, or
Manipulation assemble very small objects.
Manual The ability to quickly move your hand, your hand together
Dexterity with your arm, or your two hands to grasp, manipulate, or

assemble objects.

Cramped Work Space, How often does this job require working in cramped work

Awkward Positions spaces that requires getting into awkward positions?
Creative Originality The ability to come up with unusual or clever idesbout
Intelligence a given topic or situation, or to develop creative ways to

solve a problem.

Fine Arts Knowledge of theory and techniques required to czsap
produce, and perform works of music, dance, visual arts,
drama, and sculpture.

Social Social Being aware of others’ reactions and understanding why
Intelligence Perceptiveness they react as they do.
Negotiation Bringing others together and trying to rectnci
differences.
Persuasion Persuading others to change their minds or loehavi

Assisting and Caring for Providing personal assistance, medical attention, emo-
Others tional support, or other personal care to others such as
coworkers, customers, or patients.

to perform a specific occupation. An exception is the “Crampedk space”
variable, which measures the frequency of unstructure#t.wor

Hence, in short, by hand-labelling occupations, we worlkuadodthe issue
thatoxNET data was not gathered to specifically measure the autorfigtalbi
jobs in a similar manner to Blinder (2009). In addition, weigate some of the
subjective biases held by the researchers by using olgemtivET variables to
correct potential hand-labelling errors. The fact that aeel only 70 of the full
702 occupations, selecting those occupations whose cenigation label we
are highly confident about, further reduces the risk of stilye bias affecting
our analysis. To develop an algorithm appropriate for thskt we turn to
probabilistic classification.
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IV.B. Classification method

We begin by examining the accuracy of our subjective assassnof the au-
tomatability of 702 occupations. For classification, wealeg an algorithm

to provide the label probability given a previously unseentar of variables.

In the terminology of classification, thexNET variables form deature vec-
tor, denotedr € RY. 0xNET hence supplies a complete dataset of 702 such
feature vectors. A computerisable label is termexbas denotedy € {0, 1}.

For our problemy = 1 (true) implies that we hand-labelled as computerisable
the occupation described by the associated pieeT variables contained in

z € RY Ourtraining datais D = (X,y), whereX € R is a matrix of
variables and; € {0,1}" gives the associated labels. This dataset contains
information about how, varies as a function of: as a hypothetical example,

it may be the case that, for all occupations for which > 50, y = 1. A
probabilistic classification algorithm exploits pattemgstent in training data

to return the probability?(y. = 1 | z,, X, y) of a new, unlabelledest datum
with featurese, having class labe), = 1.

We achieve probabilistic classification by introducing & function
f:z — R, known as adiscriminant function Given the value of the dis-
criminantf, at a test point,, we assume that the probability for the class label
is given by the logistic
® Ply. =11 f) = ———.

1+ exp(—f.)
andP(y. = 0| f.) =1—P(y. = 1| f.). Forf. > 0, y. = 1is more
probable thamy, = 0. For our applicationf can be thought of as a continuous-
valued ‘automatability’ variable: the higher its valueg thigher the probability
of computerisation.

We test three different models for the discriminant functi@, using the
best performing for our further analysis. Firstly, logisor logit) regression,
which adopts a linear model fgft, f(x) = wTz, where the un-known weights
w are often inferred by maximising their probability in lighf the training
data. This simple model necessarily implies a simple manmotelationship
between features and the probability of the class takingrécpéar value.
Richer models are provided yaussian process classifiefRasmussen and
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Williams, 2006). Such classifiers model the latent functfowith a Gaussian
processP): a non-parametric probability distribution over functso

A GPis defined as a distribution over the functiohsX’ — R such that the
distribution over the possible function values on any fisiibset oft’ (such as
X) is multivariate Gaussian. For a functigifx), the prior distribution over its
valuesf on a subset C X are completely specified by a covariance maitix

@ ] K) = NEOK) = xp (5 1K ).

1

Vdet 27K
The covariance matrix is generated by a covariance funetio’ x X — R;
that is, X' = (X, X). Thecpmodel is expressed by the choicexgfwe con-
sider theexponentiated quadratisquared exponential) amational quadratic
Note that we have chosen a zero mean function, encoding siuengsion that
P(y, = 1) = 5 sufficiently far from training data.

Given training datéd, we use thespto make predictions about the function
valuesf, at inputz,. With this information, we have the predictive equations

©)) p(f* ‘£*>D>:N(f*7m(f* \g*,D),V(f* ’£*>D))a
where

©  m(filz,D) =Kz, X)KX, X) 'y
@ V(filz,.D) =Kz, z.)— Kz, X)K(X, X)'K(X,z,).

Inferring the label posterian(y. | z,, D) is complicated by the non-Gaussian
form of the logistic (3). In order to effect inference, we uke approximate
Expectation Propagation algorithm (Minka, 2001).

We tested three Gaussian process classifiers usingrtkie toolbox (Ras-
mussen and Nickisch, 2010) on our data, built around exg@ted quadratic,
rational quadratic and linear covariances. Note that ttierlégs equivalent to
logistic regression with a Gaussian prior taken on the wsigh To validate
these classifiers, we randomly selected a reduced traieingf ialf the avail-
able dataD; the remaining data formed a test set. On this test set, weated
how closely the algorithm’s classifications matched thedhabels according
to two metrics (see.g. Murphy (2012)): the area under the receiver operat-
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TaBLE Il. Performance of various classifiers; best performancémlid.

classifier model AUC log-likelihood
exponentiated quadratic 0.894 —163.3
rational quadratic 0.893 —163.7
linear (logit regression) 0.827 —205.0

ing characteristic curveaQc), which is equal to one for a perfect classifier,
and one half for a completely random classifier, and the ikegj#hood, which
should ideally be high. This experiment was repeated forumalred random
selections of training set, and the average results tadalliat Table 1. The
exponentiated quadratic model returns (narrowly) the pegbrmance of the
three (clearly outperforming the linear model correspngdbo logistic regres-
sion), and was hence selected for the remainder of our ¢gestitote that its
AUC score of nearly 0.9 represents accurate classificationalgorithm suc-
cessfully managed to reproduce our hand-labels specifyiregher an occupa-
tion was computerisable. This means that our algorithnfiedrthat our sub-
jective judgements were systematically and consisteetyted to theoxNET
variables.

Having validated our approach, we proceed to use classificéd predict
the probability of computerisation for all 702 occupatiorf®r this purpose,
we introduce a new label variable, denoting whether an occupation is truly
computerisable or not: note that this can be judged only @mceccupation
is computerised, at some indeterminate point in the futWive.take, again, a
logistic likelihood,

1

(8) P<Z*:1|f*>:1+ex—p(—f*)'
We implicitly assumed that our hand labgl,is a noise-corrupted version of
the unknown true labek. Our motivation is that our hand-labels of comput-
erisability must necessarily be treated as such noisy measnts. We thus
acknowledge that it is by no means certain that a job is coenmaible given
our labelling. We defineX, € R™2*Y as the matrix o+NET variables for all
702 occupations; this matrix represents tast features

We perform a final experiment in which, given training d&taconsisting

34



100 80

£
Q
2% 15
© © %)
o5 S
S »
2 T
0! 0
0.5 1
Probability of
" Computerisation
@ 100 100
c .
(5]
=
8 2
IS
~ ©
[} c
= i
s
8
n 0 . 0
0 0.5 1
Probability of
Computerisation
80 80
2 >
2 g
x
S 3
< —
> (&)
g 2
s : [
0 b : : 0
0 0.5 1
Probability of
Computerisation

60 ¢ .
40 [
2/

501

80
c
.
ks
!
(o))
(3]
=4

0

0 0.5 1 0 0.5 1
Probability of Probability of
Computerisation Computerisation

Originality

0 0.5 1 0 05 1

Probability of Probability of
Computerisation Computerisation
8 100

QO
(%]
X
S SRR
S 50t
© PRI
3
-
P E
g
O 0 Ll
0 0.5 1 0 0.5 1
Probability of Probability of
Computerisation Computerisation

FIGURE Il. The distribution of occupational variables as a funetad probability of

computerisation;

each occupation is a unique point.

35



of our 70 hand-labelled occupations, we aim to predidor our test features
X,. This approach firstly allows us to use the features of thectpations

about which we are most certain to predict for the remaini®®. 6-urther, our
algorithm uses the trends and patterns it has learned frékndate to correct
for what are likely to be mistaken labels. More preciselg,algorithm provides
a smoothly varying probabilistic assessment of autométiabs a function of

the variables. For our Gaussian process classifier, thigiimis non-linear,

meaning that it flexibly adapts to the patterns inherent@ittaining data. Our
approach thus allows for more complex, non-linear, intéoas between vari-
ables: for example, perhaps one variable is not of impoeamtess the value
of another variable is sufficiently large. We repéitz, | X., D) as the prob-

ability of computerisation henceforth (for a detailed pabhity ranking, see

Appendix). Figure Il illustrates that this probability i@mlinearly related to
the nineoxNET variables selected.

V. EMPLOYMENT IN THE TWENTY-FIRST CENTURY

In this section, we examine the possible future extent oic&tjob computerisa-
tion, and related labour market outcomes. The task modeigisethat recent
developments imL will reduce aggregate demand for labour input in tasks
that can be routinised by means of pattern recognition,enhdreasing the de-
mand for labour performing tasks that are not susceptibtoputerisation.
However, we make no attempt to forecast future changes im¢bepational
composition of the labour market. While the 2010-2@28 occupational em-
ployment projections predicts net employment growth across major occupa-
tions, based on historical staffing patterns, we speculadataechnology that
is in only the early stages of development. This means tisabtcal data on
the impact of the technological developments we observaasailable?! We
therefore focus on the impact of computerisation on the riplos that ex-
isted in 2010. Our analysis is thus limited to the subsbttuteffect of future
computerisation.

Turning first to the expected employment impact, reporteeigure 11, we
distinguish between high, medium and low risk occupatidepending on their

211t shall be noted that thBLS projections are based on what can be referred to as changes
in normal technological progress, and not on any breaktirdgechnologies that may be seen
as conjectural.
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Management, Business, and Financial
I Computer, Engineering, and Science
Education, Legal, Community Service, Arts, and Media
I Healthcare Practitioners and Technical
Service
I Sales and Related
Office and Administrative Support
[ Farming, Fishing, and Forestry
Construction and Extraction
I Installation, Maintenance, and Repair
Production
I Transportation and Material Moving
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FIGURE I1l. The distribution ofsLs 2010 occupational employment over the probability of
computerisation, along with the share in low, medium andh Ipigobability categories. Note
that the total area under all curves is equal to tomémployment.
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probability of computerisation (thresholding at probaigis of 0.7 and 0.3).
According to our estimate, 47 percent of tatalemployment is in the high risk
category, meaning that associated occupations are paltgtitomatable over
some unspecified number of years, perhaps a decade or twaalllbe noted
that the probability axis can be seen as a rough timelinerevhigh probabil-
ity occupations are likely to be substituted by computeiteapelatively soon.
Over the next decades, the extent of computerisation willlétermined by
the pace at which the above described engineering botkertecautomation
can be overcome. Seen from this perspective, our findingsl dauinterpreted
as two waves of computerisation, separated by a “techrzdbgiateau”. In
the first wave, we find that most workers in transportation lagéstics occu-
pations, together with the bulk of office and administratugport workers,
and labour in production occupations, are likely to be stiistl by computer
capital. As computerised cars are already being developddhre declining
cost of sensors makes augmenting vehicles with advancedrsencreasingly
cost-effective, the automation of transportation anddtgs occupations is in
line with the technological developments documented inliteeature. Fur-
thermore, algorithms for big data are already rapidly engedomains reliant
upon storing or accessing information, making it equallyitive that office
and administrative support occupations will be subjecoimjguterisation. The
computerisation of production occupations simply suggastontinuation of a
trend that has been observed over the past decades, wittriiaditobots taking
on the routine tasks of most operatives in manufacturingindastrial robots
are becoming more advanced, with enhanced senses andtgettiey will be
able to perform a wider scope of non-routine manual taskemra technologi-
cal capabilities point of view, the vast remainder of empieyt in production
occupations is thus likely to diminish over the next decades

More surprising, at first sight, is that a substantial shdrengployment in
services, sales and construction occupations exhibit iighabilities of com-
puterisation. Yet these findings are largely in line witheneiddocumented tech-
nological developments. First, the market for personal lamasehold service
robots is already growing by about 20 percent annualigi( 2013). As the
comparative advantage of human labour in tasks involvingilitpand dexter-
ity will diminish over time, the pace of labour substitutionservice occupa-
tions is likely to increase even further. Second, while @ms counterintuitive
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that sales occupations, which are likely to require a higireke of social intel-

ligence, will be subject to a wave of computerisation in teamfuture, high

risk sales occupations include, for example, cashiersteoand rental clerks,
and telemarketers. Although these occupations invoheractive tasks, they
do not necessarily require a high degree of social intelbge Our model thus
seems to do well in distinguishing between individual o@tigns within oc-

cupational categories. Third, prefabrication will allow@wing share of con-
struction work to be performed under controlled conditionfactories, which

partly eliminates task variability. This trend is likely tliive the computerisa-
tion of construction work.

In short, our findings suggest that recent developmenis iwill put a sub-
stantial share of employment, across a wide range of ocicunzatt risk in the
near future. According to our estimates, however, this vadaitomation will
be followed by a subsequent slowdown in computers for lalsolstitution,
due to persisting inhibiting engineering bottlenecks tenpaterisation. The
relatively slow pace of computerisation across the medisknoategory of em-
ployment can thus partly be interpreted as a technologieééau, with incre-
mental technological improvements successively enallinger labour sub-
stitution. More specifically, the computerisation of ocatipns in the medium
risk category will mainly depend on perception and manipoitachallenges.
This is evident from Table Ill, showing that the “manual daxy”, “finger
dexterity” and “cramped work space” variables exhibit tigkly high values
in the medium risk category. Indeed, even with recent teldyical develop-
ments, allowing for more sophisticated pattern recognjttmuman labour will
still have a comparative advantage in tasks requiring moreptex percep-
tion and manipulation. Yet with incremental technologicaprovements, the
comparative advantage of human labour in perception andpulation tasks
could eventually diminish. This will require innovativestarestructuring, im-
provements iML approaches to perception challenges, and progress irnigobot
dexterity to overcome manipulation problems related toat@n between task
iterations and the handling of irregular objects. The gehdomputerisation of
installation, maintenance, and repair occupations, waiehargely confined to
the medium risk category, and require a high degree of pgoregnd manipu-
lation capabilities, is a manifestation of this observatio

Our model predicts that the second wave of computerisatidinmvainly
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TABLE IlI. Distribution (mean and standard deviation) of valuesdach variable.

Variable Probability of Computerisation

Low Medium High
Assisting and caring for others 420  41+17 34+10

Persuasion 487.1 35t9.8 32t7.8
Negotiation 4476 33t9.3 30t8.9
Social perceptiveness 57r9 4174 3H55
Fine arts 1220 3.5t12 1.355
Originality 5146.5 35:12  32t5.6
Manual dexterity 2218 3415  36t14
Finger dexterity 3610 39t10  40+10
Cramped work space 195 3H26 3120

depend on overcoming the engineering bottlenecks relatedetative and so-
cial intelligence. As reported in Table IlI, the “fine artsqgriginality”, “ne-
gotiation”, “persuasion”, “social perceptiveness”, amgsisting and caring for
others”, variables, all exhibit relatively high values inetlow risk category. By
contrast, we note that the “manual dexterity”, “finger dexyg and “cramped
work space” variables take relatively low values. Henceshart, generalist oc-
cupations requiring knowledge of human heuristics, andiapst occupations
involving the development of novel ideas and artifacts,theeleast suscepti-
ble to computerisation. As a prototypical example of gelisravork requir-
ing a high degree of social intelligence, considerth@ ET tasks reported for
chief executives, involving “conferring with board memseorganization offi-
cials, or staff members to discuss issues, coordinateit@esivor resolve prob-
lems”, and “negotiating or approving contracts or agredsie@ur predictions
are thus intuitive in that most management, business, aaddeoccupations,
which are intensive in generalist tasks requiring socitlilgence, are largely
confined to the low risk category. The same is true of most patons in
education, healthcare, as well as arts and media jobs.O¥ReT tasks of ac-
tors, for example, involve “performing humorous and sesioierpretations of
emotions, actions, and situations, using body movemeactslfexpressions,
and gestures”, and “learning about characters in scripistagir relationships
to each other in order to develop role interpretations.” Witilese tasks are
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note that both plots share a legend.

very different from those of a chief executive, they equadlguire profound
knowledge of human heuristics, implying that a wide rang¢asks, involv-
ing social intelligence, are unlikely to become subjectdmputerisation in the
near future.

The low susceptibility of engineering and science occupatio computer-
isation, on the other hand, is largely due to the high degreeeative intelli-
gence they require. ThexNET tasks of mathematicians, for example, involve
“developing new principles and new relationships betweestiag mathemat-
ical principles to advance mathematical science” and “ootidg research to
extend mathematical knowledge in traditional areas, sa@igebra, geometry,
probability, and logic.” Hence, while it is evident that cputers are enter-
ing the domains of science and engineering, our prediciiopéicitly suggest
strong complementarities between computers and laboueatice science and
engineering occupations; although it is possible that agers will fully sub-
stitute for workers in these occupations over the long-rwe note that the
predictions of our model are strikingly in line with the textiogical trends we
observe in the automation of knowledge work, even withinupational cate-
gories. For example, we find that paralegals and legal asssst- for which
computers already substitute — in the high risk category.thatsame time,
lawyers, which rely on labour input from legal assistants, ia the low risk
category. Thus, for the work of lawyers to be fully automatatyineering bot-
tlenecks to creative and social intelligence will need t@bercome, implying
that the computerisation of legal research will complentleatvork of lawyers
in the medium term.
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To complete the picture of what recent technological prsgiie likely to
mean for the future of employment, we plot the average medege of oc-
cupations by their probability of computerisation. We de #ame for skill
level, measured by the fraction of workers having obtainbdchelor’s degree,
or higher educational attainment, within each occupatiBigure IV reveals
that both wages and educational attainment exhibit a stneggtive relation-
ship with the probability of computerisation. We note thas tprediction im-
plies a truncation in the current trend towards labour mgvkéarization, with
growing employment in high and low-wage occupations, aqumed by a
hollowing-out of middle-income jobs. Rather than reducihg demand for
middle-income occupations, which has been the patterntbegpast decades,
our model predicts that computerisation will mainly sutosé for low-skill and
low-wage jobs in the near future. By contrast, high-skill d&aingh-wage occu-
pations are the least susceptible to computer capital.

Our findings were robust to the choice of the 70 occupatioasftirmed
our training data. This was confirmed by the experimentalltesabulated in
Table II: aGPp classifier trained on half of the training data was demobgtra
able to accurately predict the labels of the other half, onerhundred different
partitions. That these predictions are accurate for mamsgipte partitions of
the training set suggests that slight modifications to thisse unlikely to lead
to substantially different results on the entire dataset.

V.A. Limitations

It shall be noted that our predictions are based on expanti@gremises
about the tasks that computer-controlled equipment carjiecéed to perform.
Hence, we focus on estimating the share of employment timgpagentially be
substituted by computer capital, from a technological bdpies point of view,
over some unspecified number of years. We make no attemptinoa¢s how
many jobs will actually be automated. The actual extent aawkpf comput-
erisation will depend on several additional factors whiagreveft unaccounted
for.

First, labour saving inventions may only be adopted if theeas to cheap
labour is scarce or prices of capital are relatively highki&dkuk, 196272 We

22For example, case study evidence suggests that mechanisagiighteenth century cotton
production initially only occurred in Britain because wdgeels were much higher relative to
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do not account for future wage levels, capital prices or lalstortages. While
these factors will impact on the timeline of our predictiola®our is the scarce
factor, implying that in the long-run wage levels will ineise relative to cap-
ital prices, making computerisation increasingly profiéafsee, for example,
Acemoglu, 2003).

Second, regulatory concerns and political activism may slown the pro-
cess of computerisation. The states of California and Negaglaor example,
currently in the process of making legislatory changes tmaafor driverless
cars. Similar steps will be needed in other states, and atioel to various
technologies. The extent and pace of legislatory impleatemt can further-
more be related to the public acceptance of technologicgrpss?® Although
resistance to technological progress has become seent@sglgommon since
the Industrial Revolution, there are recent examples otasce to technolog-
ical change? We avoid making predictions about the legislatory process a
the public acceptance of technological progress, and treipdce of comput-
erisation.

Third, making predictions about technological progressatoriously dif-
ficult (Armstrong and Sotala, 2012.For this reason, we focus on near-term
technological breakthroughs L andmR, and avoid making any predictions
about the number of years it may take to overcome variousnergng bot-
tlenecks to computerisation. Finally, we emphasise thratesour probability
estimates describe the likelihood of an occupation beifly futomated, we
do not capture any within-occupation variation resultira the computerisa-

prices of capital than in other countries (Allen, 2009b) atidition, recent empirical research
reveals a causal relationship between the access to cHeap @nd mechanisation in agricul-
tural production, in terms of sustained economic transit@vards increased mechanisation in
areas characterised by low-wage worker out-migration fflHeck and Naidu, 2013).

23For instance, William Huskisson, former cabinet ministed &1ember of Parliament for
Liverpool, was killed by a steam locomotive during the opgnof the Liverpool and Manch-
ester Railway. Nonetheless, this well-publicised inctd#id anything but dissuade the public
from railway transportation technology. By contrast, lijpgechnology is widely recognised as
having been popularly abandoned as a consequence of théimgpd the Hindenburg disaster.

24Uber, a start-up company connecting passengers with drafeluxury vehicles, has re-
cently faced pressure from from local regulators, arisiognftensions with taxicab services.
Furthermore, in 2011 thek Government scrapped a 12.7 billi@BpP project to introduce
electronic patient records after resistance from doctors.

25Marvin Minsky famously claimed in 1970 that “in from threeeight years we will have
a machine with the general intelligence of an average hureargh This prediction is yet to
materialise.
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tion of tasks that simply free-up time for human labour tofgen other tasks.
Although it is clear that the impact of productivity gains employment will
vary across occupations and industries, we make no attenmgamine such
effects.

VI. CONCLUSIONS

While computerisation has been historically confined toineutasks involving
explicit rule-based activities (Autoet al., 2003; Gooset al., 2009; Autor and
Dorn, 2013), algorithms for big data are now rapidly entgritomains reliant
upon pattern recognition and can readily substitute favlaln a wide range of
non-routine cognitive tasks (Brynjolfsson and McAfee, 20&i&1, 2013). In
addition, advanced robots are gaining enhanced sensesatatity, allowing
them to perform a broader scope of manual taskg, (2012b; Robotics+o,
2013;mal, 2013). This is likely to change the nature of work acrossigtdes
and occupations.

In this paper, we ask the question: how susceptible aremijoles to these
technological developments? To assess this, we implemeovel methodol-
ogy to estimate the probability of computerisation for 7@2ailed occupations.
Based on these estimates, we examine expected impacts @ ddmputeri-
sation on labour market outcomes, with the primary objectianalysing the
number of jobs at risk and the relationship between an odmrpsprobability
of computerisation, wages and educational attainment.

We distinguish between high, medium and low risk occupatiaepend-
ing on their probability of computerisation. We make no @ipé to estimate
the number of jobs that will actually be automated, and fanugotential job
automatability over some unspecified number of years. Atingrto our esti-
mates around 47 percent of toted employment is in the high risk category. We
refer to these as jobs at riski.e. jobs we expect could be automated relatively
soon, perhaps over the next decade or two.

Our model predicts that most workers in transportation agéstics occu-
pations, together with the bulk of office and administrasupport workers, and
labour in production occupations, are at risk. These finglarg consistent with
recent technological developments documented in thetiiez. More surpris-
ingly, we find that a substantial share of employment in seraccupations,
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where mosts job growth has occurred over the past decades (Autor and, Dorn
2013), are highly susceptible to computerisation. Addgiosupport for this
finding is provided by the recent growth in the market for sgrvobots (Gl
2013) and the gradually diminishment of the comparativeaathge of human
labour in tasks involving mobility and dexterity (Robotigs, 2013).

Finally, we provide evidence that wages and educationaiiettent exhibit
a strong negative relationship with the probability of cartgpisation. We note
that this finding implies a discontinuity between the nieat#, twentieth and
the twenty-first century, in the impact of capital deeperonghe relative de-
mand for skilled labour. While nineteenth century manufantutechnologies
largely substituted for skilled labour through the simphtion of tasks (Braver-
man, 1974; Hounshell, 1985; James and Skinner, 1985; GaidirKatz, 1998),
the Computer Revolution of the twentieth century caused aWwallg-out of
middle-income jobs (Goost al., 2009; Autor and Dorn, 2013). Our model
predicts a truncation in the current trend towards labourketapolarisation,
with computerisation being principally confined to low{skind low-wage oc-
cupations. Our findings thus imply that as technology ra¢esad, low-skill
workers will reallocate to tasks that are non-susceptibleamputerisation —
i.e,, tasks requiring creative and social intelligence. Fork&os to win the
race, however, they will have to acquire creative and sekidb.
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APPENDIX

The table below ranks occupations according to their priibabf computeri-
sation (from least- to most-computerisable). Those odimpgused as training
data are labelled as either ‘0’ (not computerisable) or ¢bniputerisable), re-
spectively. There are 70 such occupations, 10 percent abtaenumber of

occupations.

Computerisable

Rank  Probability Label soccode

Occupation

1. 0.0028 29-1125
2. 0.003 49-1011
3. 0.003 11-9161
4. 0.0031 21-1023
5. 0.0033 29-1181
6. 0.0035 29-1122
7. 0.0035 29-2091
8. 0.0035 21-1022
9. 0.0036 29-1022
10. 0.0036 33-1021
11. 0.0039 29-1031
12. 0.0039 11-9081
13. 0.004 27-2032
14. 0.0041 41-9031
15. 0.0042 0 29-1060
16. 0.0042 25-9031
17. 0.0043 19-3039
18. 0.0044 33-1012
19. 0.0044 0 29-1021
20. 0.0044 25-2021
21. 0.0045 19-1042
22. 0.0046 11-9032
23. 0.0046 29-1081
24. 0.0047 19-3031
25. 0.0048 21-1014
26. 0.0049 51-6092
27. 0.0055 27-1027
28. 0.0055 11-3121
29. 0.0061 39-9032
30. 0.0063 11-3131
31. 0.0064 29-1127
32. 0.0065 15-1121
33. 0.0067 0 11-9151
34. 0.0068 25-4012
35. 0.0071 29-9091
36. 0.0073 11-9111
37. 0.0074 0 25-2011
38. 0.0075 25-9021
39. 0.0077 19-3091

Recreational Therapists

First-Line Supervisors of Mechanics dihests, and Repairers
Emergency Management Directors

Mental Health and Substance Abuse Socigians
Audiologists

Occupational Therapists

Orthotists and Prosthetists

Healthcare Social Workers

Oral and Maxillofacial Surgeons

First-Line Supervisors of Fire Fightangl Prevention Workers
Dietitians and Nutritionists

Lodging Managers

Choreographers

Sales Engineers

Physicians and Surgeons

Instructional Coordinators

Psychologists, All Other

First-Line Supervisors of Police anceBtates
Dentists, General

Elementary School Teachers, Except&iehication
Medical Scientists, Except Epidemisksgi
Education Administrators, ElementarySewbndary School
Podiatrists

Clinical, Counseling, and School Psiptfists

Mental Health Counselors

Fabric and Apparel Patternmakers

Set and Exhibit Designers

Human Resources Managers

Recreation Workers

Training and Development Managers
Speech-Language Pathologists

Computer Systems Analysts

Social and Community Service Managers
Curators

Athletic Trainers

Medical and Health Services Managers
Preschool Teachers, Except Speciabidn

Farm and Home Management Advisors
Anthropologists and Archeologists
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Computerisable

Rank  Probability Label soccode

Occupation

40. 0.0077 25-2054
41. 0.0078 25-2031
42. 0.0081 0 21-2011
43. 0.0081 19-1032
44, 0.0085 21-1012
45. 0.0088 25-2032
46. 0.009 0 29-1111
47. 0.0094 21-1015
48. 0.0095 25-3999
49. 0.0095 19-4092
50. 0.01 39-5091
51. 0.01 17-2121
52. 0.01 11-9033
53. 0.011 17-2141
54. 0.012 29-1051
55. 0.012 13-1081
56. 0.012 19-1022
57. 0.012 19-3032
58. 0.013 27-2022
59. 0.013 11-2022
60. 0.014 19-2043
61. 0.014 11-2021
62. 0.014 0 21-1013
63. 0.014 17-2199
64. 0.014 13-1151
65. 0.014 43-1011
66. 0.015 19-1029
67. 0.015 11-2031
68. 0.015 27-1014
69. 0.015 15-1111
70. 0.015 0 11-1011
71. 0.015 0 11-9031
72. 0.015 27-2041
73. 0.016 51-1011
74. 0.016 41-3031
75. 0.016 19-1031
76. 0.016 25-2053
77. 0.017 17-2041
78. 0.017 11-9041
79. 0.017 17-2011
80. 0.018 11-9121
81. 0.018 17-2081
82. 0.018 17-1011
83. 0.018 31-2021
84. 0.019 0 17-2051
85. 0.02 29-1199
86. 0.021 19-1013
87. 0.021 19-2032

Special Education Teachers, Secondanos
Secondary School Teachers, Exceptabped Career/Technical Edu-

cation

Clergy

Foresters

Educational, Guidance, School, andtMoed Counselors
Career/Technical Education Teachecsrfélary School
Registered Nurses

Rehabilitation Counselors

Teachers and Instructors, All Other

Forensic Science Technicians

Makeup Atrtists, Theatrical and Performance

Marine Engineers and Naval Architects

Education Administrators, Postsecondary

Mechanical Engineers

Pharmacists

Logisticians

Microbiologists

Industrial-Organizational Psycholsgis

Coaches and Scouts

Sales Managers

Hydrologists

Marketing Managers

Marriage and Family Therapists

Engineers, All Other

Training and Development Specialists

First-Line Supervisors of Office and Adstiaitive Support Workers
Biological Scientists, All Other

Public Relations and Fundraising Marsager
Multimedia Artists and Animators

Computer and Information Research Sdientis

Chief Executives

Education Administrators, PreschoolGhilticare Center/Program
Music Directors and Composers

First-Line Supervisors of Production @pérating Workers
Securities, Commodities, and Financiali&ey Sales Agents
Conservation Scientists

Special Education Teachers, Middle Schoo

Chemical Engineers

Architectural and Engineering Managers

Aerospace Engineers

Natural Sciences Managers

Environmental Engineers

Architects, Except Landscape and Naval

Physical Therapist Assistants

Civil Engineers

Health Diagnosing and Treating PracstionAll Other
Soil and Plant Scientists

Materials Scientists
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Computerisable

Rank  Probability Label soccode

Occupation

88. 0.021 17-2131
89. 0.021 0 27-1022
90. 0.021 29-1123
91. 0.021 27-4021
92. 0.022 27-2012
93. 0.022 27-1025
94. 0.023 29-1023
95. 0.023 27-1011
96. 0.025 33-1011
97. 0.025 21-2021
98. 0.025 17-2072
99. 0.027 19-1021
100. 0.027 29-1011
101. 0.028 31-2011
102. 0.028 21-1021
103. 0.028 17-2111
104. 0.029 17-2112
105. 0.029 53-1031
106. 0.029 29-2056
107. 0.03 11-3051
108. 0.03 17-3026
109. 0.03 15-1142
110. 0.03 15-1141
111. 0.03 11-3061
112. 0.032 25-1000
113. 0.033 19-2041
114. 0.033 0 21-1011
115. 0.035 0 23-1011
116. 0.035 27-1012
117. 0.035 15-2031
118. 0.035 11-3021
119. 0.037 27-1021
120. 0.037 17-2031
121. 0.037 0 13-1121
122. 0.038 29-1131
123. 0.038 27-3043
124. 0.039 11-2011
125. 0.039 19-3094
126. 0.04 13-2071
127. 0.04 19-3099
128. 0.041 19-2011
129. 0.041 53-5031
130. 0.042 15-1132
131. 0.042 27-1013
132. 0.043 29-2053
133. 0.045 0 17-1012
134. 0.045 21-1091

Materials Engineers

Fashion Designers

Physical Therapists

Photographers

Producers and Directors

Interior Designers

Orthodontists

Art Directors

First-Line Supervisors of Correctiontficers
Directors, Religious Activities and Eatian
Electronics Engineers, Except Computer
Biochemists and Biophysicists
Chiropractors

Occupational Therapy Assistants

Child, Family, and School Social Workers
Health and Safety Engineers, ExceptigiSafety Engineers and In-

spectors

Industrial Engineers
First-Line Supervisors of Transparteéind Material-Moving Machine

and Vehicle Operators

Veterinary Technologists and Techmicia
Industrial Production Managers

Industrial Engineering Technicians

Network and Computer Systems Administrators
Database Administrators

Purchasing Managers

Postsecondary Teachers

Environmental Scientists and Speaalistiuding Health
Substance Abuse and Behavioral DisGalenselors
Lawyers

Craft Artists

Operations Research Analysts

Computer and Information Systems Managers
Commercial and Industrial Designers
Biomedical Engineers

Meeting, Convention, and Event Planner
Veterinarians

Writers and Authors

Advertising and Promotions Managers

Political Scientists

Credit Counselors

Social Scientists and Related Workethler
Astronomers

Ship Engineers

Software Developers, Applications

Fine Artists, Including Painters, Smutp and Illustrators
Psychiatric Technicians

Landscape Architects

Health Educators
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Computerisable

Rank  Probability Label soccode Occupation

135. 0.047 15-2021 Mathematicians

136. 0.047 27-1023 Floral Designers

137. 0.047 11-9013 Farmers, Ranchers, and Other AgricuManagers
138. 0.048 33-2022 Forest Fire Inspectors and Preventieni&jsts
139. 0.049 29-2041 Emergency Medical Technicians and Pafesned
140. 0.055 27-3041 Editors

141. 0.055 29-1024 Prosthodontists

142. 0.055 0 29-9799 Healthcare Practitioners and Techwiaekers, All Other
143. 0.057 39-7012 Travel Guides

144. 0.058 29-2061 Licensed Practical and Licensed Vazaltidurses
145. 0.059 19-3041 Sociologists

146. 0.06 23-1022 Arbitrators, Mediators, and Concilistor

147. 0.061 19-1011 Animal Scientists

148. 0.064 39-9041 Residential Advisors

149. 0.066 53-1011 Aircraft Cargo Handling Supervisors

150. 0.066 29-1126 Respiratory Therapists

151. 0.067 27-3021 Broadcast News Analysts

152. 0.069 11-3031 Financial Managers

153. 0.07 17-2161 Nuclear Engineers

154. 0.071 11-9021 Construction Managers

155. 0.074 27-2042 Musicians and Singers

156. 0.075 41-1012 First-Line Supervisors of Non-RetaiéS#&Vorkers
157. 0.076 39-1021 First-Line Supervisors of Personali€eMorkers
158. 0.077 19-1012 Food Scientists and Technologists

159. 0.08 0 13-1041 Compliance Officers

160. 0.08 33-3031 Fish and Game Wardens

161. 0.082 27-1024 Graphic Designers

162. 0.083 11-9051 Food Service Managers

163. 0.084 0 39-9011 Childcare Workers

164. 0.085 39-9031 Fitness Trainers and Aerobics Instrsicto

165. 0.091 11-9071 Gaming Managers

166. 0.097 49-9051 Electrical Power-Line Installers angdrers
167. 0.098 33-3051 Police and Sheriff's Patrol Officers

168. 0.099 41-3041 Travel Agents

169. 0.1 0 35-1011 Chefs and Head Cooks

170. 0.1 39-2011 Animal Trainers

171. 0.1 27-3011 Radio and Television Announcers

172. 0.1 0 17-2071 Electrical Engineers

173. 0.1 19-2031 Chemists

174. 0.1 29-2054 Respiratory Therapy Technicians

175. 0.1 0 19-2012 Physicists

176. 0.11 0 39-5012 Hairdressers, Hairstylists, and Codoggsts

177. 0.11 27-3022 Reporters and Correspondents

178. 0.11 53-2021 Air Traffic Controllers

179. 0.13 27-2031 Dancers

180. 0.13 29-2033 Nuclear Medicine Technologists

181. 0.13 15-1133 Software Developers, Systems Software

182. 0.13 13-1111 Management Analysts

183. 0.13 29-2051 Dietetic Technicians
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Computerisable

Rank  Probability Label soccode

Occupation

184. 0.13 19-3051
185. 0.13 21-1093
186. 0.13 25-3021
187. 0.13 27-4014
188. 0.14 29-1041
189. 0.14 17-2151
190. 0.14 29-1071
191. 0.15 25-2012
192. 0.15 47-2111
193. 0.16 17-2171
194. 0.16 43-9031
195. 0.16 11-1021
196. 0.17 29-9011
197. 0.17 33-2011
198. 0.17 13-2061
199. 0.17 47-1011
200. 0.17 25-2022
201. 0.18 27-3031
202. 0.18 49-9092
203. 0.18 49-9095
204. 0.18 53-2011
205. 0.19 25-3011
206. 0.2 19-1041
207. 0.2 39-4831
208. 0.21 15-1179
209. 0.21 15-2011
210. 0.21 33-9011
211. 0.21 0 39-6012
212. 0.22 15-1799
213. 0.22 15-2041
214. 0.22 17-2061
215. 0.23 19-3022
216. 0.23 13-1199
217. 0.23 13-2051
218. 0.23 29-2037
219. 0.23 29-2031
220. 0.24 13-1011
221. 0.24 17-3029
222. 0.25 19-3092
223. 0.25 29-9012
224. 0.25 21-1092
225. 0.25 17-3025
226. 0.25 11-9199
227. 0.25 53-3011
228. 0.25 41-4011

Urban and Regional Planners

Social and Human Service Assistants

Self-Enrichment Education Teachers

Sound Engineering Technicians

Optometrists

Mining and Geological Engineers, Ineigdvlining Safety Engineers

Physician Assistants

Kindergarten Teachers, Except Speciatdtitn

Electricians

Petroleum Engineers

Desktop Publishers

General and Operations Managers

Occupational Health and Safety Spetsialis

Firefighters

Financial Examiners

First-Line Supervisors of Constructiced€s and Extraction Workers

Middle School Teachers, Except Spec@liCareer/Technical Educa-
tion

Public Relations Specialists

Commercial Divers

Manufactured Building and Mobile Homedltsts

Airline Pilots, Copilots, and Flight Emegrs

Adult Basic and Secondary Education atetddy Teachers and In-
structors

Epidemiologists

Funeral Service Managers, Directors, iblarts, and Undertakers

Information Security Analysts, Web Depets, and Computer Net-

work Architects

Actuaries

Animal Control Workers

Concierges

Computer Occupations, All Other

Statisticians

Computer Hardware Engineers

Survey Researchers

Business Operations Specialists, AkOth

Financial Analysts

Radiologic Technologists and Technécian

Cardiovascular Technologists and Tems

Agents and Business Managers of Artistépiners, and Athletes

Engineering Technicians, Except Disifislt Other

Geographers

Occupational Health and Safety Techrscia

Probation Officers and Correctional Tmeat Specialists

Environmental Engineering Technicians

Managers, All Other

Ambulance Drivers and Attendants, Exceptrency Medical Tech-
nicians

Sales Representatives, Wholesale andfataming, Technical and
Scientific Products
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Computerisable

Rank  Probability Label soccode

Occupation

229. 0.26 25-2023
230. 0.27 53-5021
231. 0.27 31-2012
232. 0.27 49-9062
233. 0.28 41-1011
234. 0.28 0 27-2021
235. 0.28 39-1011
236. 0.29 39-5094
237. 0.29 13-1022
238. 0.3 19-4021
239. 0.3 31-9092
240. 0.3 0 19-1023
241. 0.3 35-2013
242. 0.31 13-1078
243. 0.31 33-9021
244. 0.31 27-4032
245. 0.33 13-2099
246. 0.34 33-3021
247. 0.34 29-2055
248. 0.34 29-1124
249. 0.35 0 47-2152
250. 0.35 0 53-2031
251. 0.35 29-2032
252. 0.36 33-3011
253. 0.36 51-4012
254. 0.36 49-2022
255. 0.37 51-9051
256. 0.37 53-7061
257. 0.37 39-4021
258. 0.37 47-5081
259. 0.37 27-2011
260. 0.37 53-7111
261. 0.38 49-2095
262. 0.38 1 17-1022
263. 0.38 17-3027
264. 0.38 53-7064
265. 0.38 27-3091
266. 0.39 31-1011
267. 0.39 51-6093
268. 0.39 47-4021
269. 0.39 43-3041
270. 0.39 25-9011
271. 0.4 0 23-1023
272. 0.4 49-3042
273. 0.4 29-2799
274. 0.41 45-2041

Career/Technical Education TeacheddI®iSchool

Captains, Mates, and Pilots of Water \&esse

Occupational Therapy Aides

Medical Equipment Repairers

First-Line Supervisors of Retail Saleskéis

Athletes and Sports Competitors

Gaming Supervisors

Skincare Specialists

Wholesale and Retail Buyers, Except Faoaiuets

Biological Technicians

Medical Assistants

Zoologists and Wildlife Biologists

Cooks, Private Household

Human Resources, Training, and LaboriBesaBpecialists, All Other

Private Detectives and Investigators

Film and Video Editors

Financial Specialists, All Other

Detectives and Criminal Investigators

Surgical Technologists

Radiation Therapists

Plumbers, Pipefitters, and Steamfitters

Flight Attendants

Diagnostic Medical Sonographers

Bailiffs

Computer Numerically Controlled Machinel Rrogrammers, Metal
and Plastic

Telecommunications Equipment InstalledsRepairers, Except Line
Installers

Furnace, Kiln, Oven, Drier, and Kettle @fmrs and Tenders

Cleaners of Vehicles and Equipment

Funeral Attendants

Helpers—Extraction Workers

Actors

Mine Shuttle Car Operators

Electrical and Electronics Repairersidfloouse, Substation, and Re-
lay

Surveyors

Mechanical Engineering Technicians

Packers and Packagers, Hand

Interpreters and Translators

Home Health Aides

Upholsterers

Elevator Installers and Repairers

Gaming Cage Workers

Audio-Visual and Multimedia Collectiome8ialists

Judges, Magistrate Judges, and Magsstrat

Mobile Heavy Equipment Mechanics, Excepjirtas

Health Technologists and TechniciansQ#&ier

Graders and Sorters, Agricultural Prizduc
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Computerisable

Rank  Probability Label soccode Occupation

275. 0.41 51-2041 Structural Metal Fabricators and Fitters

276. 0.41 1 23-1012 Judicial Law Clerks

277. 0.41 49-2094 Electrical and Electronics Repairersp@ercial and Industrial Equip-
ment

278. 0.42 19-4093 Forest and Conservation Technicians

279. 0.42 53-1021 First-Line Supervisors of Helpers, Latmrand Material Movers,
Hand

280. 0.43 39-3093 Locker Room, Coatroom, and Dressing Rooemddints

281. 0.43 19-2099 Physical Scientists, All Other

282. 0.43 0 19-3011 Economists

283. 0.44 19-3093 Historians

284. 0.45 51-9082 Medical Appliance Technicians

285. 0.46 43-4031 Court, Municipal, and License Clerks

286. 0.47 13-1141 Compensation, Benefits, and Job Analysisi@jsts

287. 0.47 31-1013 Psychiatric Aides

288. 0.47 29-2012 Medical and Clinical Laboratory Tectanisi

289. 0.48 33-2021 Fire Inspectors and Investigators

290. 0.48 17-3021 Aerospace Engineering and Operatiormi@ans

291. 0.48 27-1026 Merchandise Displayers and Window Trimmers

292. 0.48 47-5031 Explosives Workers, Ordnance HandlingeEs, and Blasters

293. 0.48 15-1131 Computer Programmers

294. 0.49 33-9091 Crossing Guards

295. 0.49 17-2021 Agricultural Engineers

296. 0.49 47-5061 Roof Bolters, Mining

297. 0.49 49-9052 Telecommunications Line Installers ancaRers

298. 0.49 43-5031 Police, Fire, and Ambulance Dispatchers

299. 0.5 53-7033 Loading Machine Operators, Undergroundridi

300. 0.5 49-9799 Installation, Maintenance, and Repaikéfs; All Other

301. 0.5 23-2091 Court Reporters

302. 0.51 41-9011 Demonstrators and Product Promoters

303. 0.51 31-9091 Dental Assistants

304. 0.52 51-6041 Shoe and Leather Workers and Repairers

305. 0.52 17-3011 Architectural and Civil Drafters

306. 0.53 47-5012 Rotary Drill Operators, Oil and Gas

307. 0.53 47-4041 Hazardous Materials Removal Workers

308. 0.54 39-4011 Embalmers

309. 0.54 47-5041 Continuous Mining Machine Operators

310. 0.54 39-1012 Slot Supervisors

311. 0.54 31-9011 Massage Therapists

312. 0.54 41-3011 Advertising Sales Agents

313. 0.55 49-3022 Automotive Glass Installers and Repairers

314. 0.55 53-2012 Commercial Pilots

315. 0.55 43-4051 Customer Service Representatives

316. 0.55 27-4011 Audio and Video Equipment Technicians

317. 0.56 25-9041 Teacher Assistants

318. 0.57 45-1011 First-Line Supervisors of Farming, Fighand Forestry Workers

3109. 0.57 19-4031 Chemical Technicians

320. 0.57 47-3015 Helpers—Pipelayers, Plumbers, Pipsfitited Steamfitters

321. 0.57 1 13-1051 Cost Estimators
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Computerisable

Rank  Probability Label soccode

Occupation

322. 0.57 33-3052
323. 0.57 37-1012
324. 0.58 13-2052
325. 0.59 49-9044
326. 0.59 25-4013
327. 0.59 47-5042
328. 0.59 0 11-3071
329. 0.59 49-3092
330. 0.59 49-3023
331. 0.6 33-3012
332. 0.6 27-4031
333. 0.6 51-3023
334. 0.61 49-2096
335. 0.61 31-2022
336. 0.61 39-3092
337. 0.61 1 13-1161
338. 0.61 43-4181
339. 0.61 51-8031
340. 0.61 19-4099
341. 0.61 51-3093
342. 0.61 51-4122
343. 0.62 1 53-5022
344. 0.62 47-2082
345. 0.62 47-2151
346. 0.63 19-2042
347. 0.63 49-9012
348. 0.63 31-9799
349. 0.63 35-1012
350. 0.63 47-4011
351. 0.64 51-9031
352. 0.64 49-9071
353. 0.64 23-1021
354. 0.64 43-5081
3565. 0.64 51-8012
356. 0.64 47-2132
357. 0.65 19-4061
358. 0.65 51-4041
359. 0.65 15-1150
360. 0.65 25-4021
361. 0.65 49-2097
362. 0.65 49-9021
363. 0.65 53-7041
364. 0.66 37-2021
365. 0.66 51-9198
366. 0.66 43-9111
367. 0.66 37-2011
368. 0.66 49-3051

Transit and Railroad Police

First-Line Supervisors of Landscapingawi. Service, and
Groundskeeping Workers

Personal Financial Advisors

Millwrights

Museum Technicians and Conservators

Mine Cutting and Channeling Machine Gpesa

Transportation, Storage, and DistabWlanagers

Recreational Vehicle Service Technician

Automotive Service Technicians and Mdckan

Correctional Officers and Jailers

Camera Operators, Television, Video, aniibi®icture

Slaughterers and Meat Packers

Electronic Equipment Installers and RepmiMotor Vehicles

Physical Therapist Aides

Costume Attendants

Market Research Analysts and Marketiegiglists

Reservation and Transportation Tickethfgyand Travel Clerks

Water and Wastewater Treatment Plant astdr8yDperators

Life, Physical, and Social Science Teiduns, All Other

Food Cooking Machine Operators and Tender

Welding, Soldering, and Brazing Machiete®s, Operators, and Ten-
ders

Motorboat Operators

Tapers

Pipelayers

Geoscientists, Except Hydrologists aemb@&phers

Control and Valve Installers and Repsitexcept Mechanical Door

Healthcare Support Workers, All Other

First-Line Supervisors of Food Prepamathd Serving Workers

Construction and Building Inspectors

Cutters and Trimmers, Hand

Maintenance and Repair Workers, General

Administrative Law Judges, Adjudicatams] Hearing Officers

Stock Clerks and Order Fillers

Power Distributors and Dispatchers

Insulation Workers, Mechanical

Social Science Research Assistants

Machinists

Computer Support Specialists

Librarians

Electronic Home Entertainment Equipmendlless and Repairers

Heating, Air Conditioning, and RefrigemMechanics and Installers

Hoist and Winch Operators

Pest Control Workers

Helpers—Production Workers

Statistical Assistants

Janitors and Cleaners, Except Maids anddtkeeping Cleaners

Motorboat Mechanics and Service Tecmsci
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Computerisable

Rank  Probability Label soccode Occupation

369. 0.67 51-9196 Paper Goods Machine Setters, OperatalJenders

370. 0.67 51-4071 Foundry Mold and Coremakers

371. 0.67 19-2021 Atmospheric and Space Scientists

372. 0.67 1 53-3021 Bus Drivers, Transit and Intercity

373. 0.67 33-9092 Lifeguards, Ski Patrol, and Other ReimealtProtective Service Work-
ers

374. 0.67 49-9041 Industrial Machinery Mechanics

375. 0.68 43-5052 Postal Service Mail Carriers

376. 0.68 47-5071 Roustabouts, Oil and Gas

377. 0.68 47-2011 Boilermakers

378. 0.68 17-3013 Mechanical Drafters

379. 0.68 29-2021 Dental Hygienists

380. 0.69 1 53-3033 Light Truck or Delivery Services Drivers

381. 0.69 0 37-2012 Maids and Housekeeping Cleaners

382. 0.69 51-9122 Painters, Transportation Equipment

383. 0.7 43-4061 Eligibility Interviewers, Government Piags

384. 0.7 49-3093 Tire Repairers and Changers

385. 0.7 51-3092 Food Batchmakers

386. 0.7 49-2091 Avionics Technicians

387. 0.71 49-3011 Aircraft Mechanics and Service Techngia

388. 0.71 53-2022 Airfield Operations Specialists

389. 0.71 51-8093 Petroleum Pump System Operators, Refingta@rs, and Gaugers

390. 0.71 47-4799 Construction and Related Workers, AleDth

391. 0.71 29-2081 Opticians, Dispensing

392. 0.71 51-6011 Laundry and Dry-Cleaning Workers

393. 0.72 39-3091 Amusement and Recreation Attendants

394. 0.72 31-9095 Pharmacy Aides

395. 0.72 47-3016 Helpers—Roofers

396. 0.72 53-7121 Tank Car, Truck, and Ship Loaders

397. 0.72 49-9031 Home Appliance Repairers

398. 0.72 47-2031 Carpenters

399. 0.72 27-3012 Public Address System and Other Annoancer

400. 0.73 51-6063 Textile Knitting and Weaving Machine &wsttOperators, and Tenders

401. 0.73 11-3011 Administrative Services Managers

402. 0.73 47-2121 Glaziers

403. 0.73 51-2021 Coil Winders, Tapers, and Finishers

404. 0.73 49-3031 Bus and Truck Mechanics and Diesel Engireidlists

405. 0.74 49-2011 Computer, Automated Teller, and Office MeeRepairers

406. 0.74 39-9021 Personal Care Aides

407. 0.74 27-4012 Broadcast Technicians

408. 0.74 47-3013 Helpers—Electricians

4009. 0.75 11-9131 Postmasters and Mail Superintendents

410. 0.75 47-2044 Tile and Marble Setters

411. 0.75 47-2141 Painters, Construction and Maintenance

412. 0.75 53-6061 Transportation Attendants, Except Eigtendants

413. 0.75 1 17-3022 Civil Engineering Technicians

414. 0.75 49-3041 Farm Equipment Mechanics and Service T@ahs

415. 0.76 25-4011 Archivists

416. 0.76 51-9011 Chemical Equipment Operators and Tenders

65



Computerisable

Rank  Probability Label soccode

Occupation

417. 0.76 49-2092
418. 0.76 45-4021
419. 0.77 19-4091
420. 0.77 49-9094
421. 0.77 37-3013
422. 0.77 35-3011
423. 0.77 13-1023
424. 0.77 1 35-9021
425. 0.77 0 45-3021
426. 0.78 31-9093
427. 0.78 51-4031
428. 0.78 43-9011
429. 0.78 51-8092
430. 0.79 43-5053
431. 0.79 53-3032
432. 0.79 39-5093
433. 0.79 47-2081
434. 0.79 49-9098
435. 0.79 49-3052
436. 0.79 51-2011
437. 0.79 45-4022
438. 0.79 47-2042
439. 0.8 39-5011
440. 0.8 47-5011
441. 0.81 1 35-2011
442, 0.81 43-9022
443. 0.81 1 17-3012
444, 0.81 17-3024
445, 0.81 51-9192
446. 0.81 11-9141
447. 0.81 43-6013
448. 0.81 51-6021
449. 0.82 51-2031
450. 0.82 49-2098
451. 0.82 49-9045
452. 0.82 39-2021
453. 0.82 1 47-2211
454. 0.82 47-2072
4565. 0.82 47-2021
456. 0.83 45-3011
457. 0.83 47-2221
458. 0.83 53-4021
459. 0.83 53-4031
460. 0.83 35-2012
461. 0.83 53-5011
462. 0.83 51-9023

Electric Motor, Power Tool, and Relategdrers

Fallers

Environmental Science and Protectionriieieins, Including Health

Locksmiths and Safe Repairers

Tree Trimmers and Pruners

Bartenders

Purchasing Agents, Except Wholesalejl Retd Farm Products

Dishwashers

Hunters and Trappers

Medical Equipment Preparers

Cutting, Punching, and Press MachinerSe®perators, and Tenders,
Metal and Plastic

Computer Operators

Gas Plant Operators

Postal Service Mail Sorters, ProcesandsProcessing Machine Oper-
ators

Heavy and Tractor-Trailer Truck Drivers

Shampooers

Drywall and Ceiling Tile Installers

Helpers—Installation, Maintenance,Reyphir Workers

Motorcycle Mechanics

Aircraft Structure, Surfaces, Riggimgl 8ystems Assemblers

Logging Equipment Operators

Floor Layers, Except Carpet, Wood, and Hiées

Barbers

Derrick Operators, Oil and Gas

Cooks, Fast Food

Word Processors and Typists

Electrical and Electronics Drafters

Electro-Mechanical Technicians

Cleaning, Washing, and Metal Picklingigment Operators and Ten-
ders

Property, Real Estate, and Community AsociManagers

Medical Secretaries

Pressers, Textile, Garment, and Relatéetisla

Engine and Other Machine Assemblers

Security and Fire Alarm Systems Installers

Refractory Materials Repairers, ExcejokBiasons

Nonfarm Animal Caretakers

Sheet Metal Workers

Pile-Driver Operators

Brickmasons and Blockmasons

Fishers and Related Fishing Workers

Structural Iron and Steel Workers

Railroad Brake, Signal, and Switch Opesat

Railroad Conductors and Yardmasters

Cooks, Institution and Cafeteria

Sailors and Marine Oilers

Mixing and Blending Machine Setters, @jpes, and Tenders

66



Computerisable

Rank  Probability Label soccode

Occupation

463. 0.83 47-3011
464. 0.83 47-4091
465. 0.83 47-2131
466. 0.83 51-5112
467. 0.83 53-6031
468. 0.83 47-4071
469. 0.83 39-6011
470. 0.83 41-2012
471. 0.83 51-4023
472. 0.83 47-2071
473. 0.84 51-4111
474, 0.84 17-3023
475. 0.84 47-2161
476. 0.84 51-4192
477. 0.84 51-4034
478. 0.84 33-9032
479. 0.84 51-6052
480. 0.84 53-7073
481. 0.84 43-9081
482. 0.84 33-3041
483. 0.85 53-7062
484. 0.85 41-4012
485. 0.85 1 43-5041
486. 0.85 51-8013
487. 0.85 51-8091
488. 0.85 47-5021
489. 0.85 19-4051
490. 0.86 43-6011
491. 0.86 51-8099
492. 0.86 35-3041
493. 0.86 51-7041
494. 0.86 53-4041
495. 0.86 31-9096
496. 0.86 51-9032
497. 0.86 41-9022
498. 0.86 1 51-4011
499. 0.86 49-9043
500. 0.86 43-4021
501. 0.87 45-2090
502. 0.87 45-4011
503. 0.87 51-4052
504. 0.87 47-2041
505. 0.87 47-2142
506. 0.87 13-1021
507. 0.87 51-7021
508. 0.87 35-2021

Helpers—Brickmasons, Blockmasons, Sta@reaand Tile and Mar-

ble Setters

Segmental Pavers

Insulation Workers, Floor, Ceiling, analW

Printing Press Operators

Automotive and Watercraft Service Attetsla

Septic Tank Servicers and Sewer Pipe &igan

Baggage Porters and Bellhops

Gaming Change Persons and Booth Cashiers

Rolling Machine Setters, Operators, andidrs, Metal and Plastic
Paving, Surfacing, and Tamping Equipmertddmrs

Tool and Die Makers

Electrical and Electronics Engineerieghinicians

Plasterers and Stucco Masons

Layout Workers, Metal and Plastic

Lathe and Turning Machine Tool Settersré&iprs, and Tenders, Metal

and Plastic

Security Guards

Tailors, Dressmakers, and Custom Sewers

Wellhead Pumpers

Proofreaders and Copy Markers

Parking Enforcement Workers

Laborers and Freight, Stock, and Matetiaters, Hand

Sales Representatives, Wholesale andataming, Except Technical

and Scientific Products

Meter Readers, Utilities

Power Plant Operators

Chemical Plant and System Operators

Earth Drillers, Except Oil and Gas

Nuclear Technicians

Executive Secretaries and Executive Adtrative Assistants
Plant and System Operators, All Other

Food Servers, Nonrestaurant

Sawing Machine Setters, Operators, amdefe, Wood
Subway and Streetcar Operators

Veterinary Assistants and Laboratoryn@hiCaretakers
Cutting and Slicing Machine Setters, @xpes, and Tenders
Real Estate Sales Agents

Computer-Controlled Machine Tool OpesatMetal and Plastic
Maintenance Workers, Machinery

Correspondence Clerks

Miscellaneous Agricultural Workers

Forest and Conservation Workers

Pourers and Casters, Metal

Carpet Installers

Paperhangers

Buyers and Purchasing Agents, Farm Pioduc

Furniture Finishers

Food Preparation Workers
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Computerisable

Rank  Probability Label soccode

Occupation

5009. 0.87 47-2043
510. 0.87 1 53-6021
511. 0.87 47-4051
512. 0.88 47-2061
513. 0.88 43-5061
514. 0.88 51-9141
5165. 0.88 17-1021
516. 0.88 51-4051
517. 0.88 51-9012
518. 0.88 51-6091
519. 0.88 47-2053
520. 0.88 51-4194
521. 0.88 49-3043
522. 0.89 51-3011
523. 0.89 1 31-9094
524. 0.89 47-2022
525. 0.89 53-3022
526. 0.89 1 27-3042
527. 0.89 49-9096
528. 0.89 47-4061
529. 0.89 51-8021
530. 0.89 1 51-6031
531. 0.89 1 53-3041
532. 0.9 1 43-4161
533. 0.9 29-2011
534. 0.9 47-2171
535. 0.9 47-2181
536. 0.9 53-7021
537. 0.9 53-6041
538. 0.9 53-6051
539. 0.9 51-4062
540. 0.9 51-9195
541. 0.9 13-2021
542. 0.9 53-7072
543. 0.9 49-9097
544. 0.91 39-3012
545. 0.91 49-9063
546. 0.91 39-7011
547. 0.91 49-9011
548. 0.91 51-3091
549. 0.91 53-7071
550. 0.91 29-2071
551. 0.91 51-9121
552. 0.91 51-4081

Floor Sanders and Finishers

Parking Lot Attendants

Highway Maintenance Workers

Construction Laborers

Production, Planning, and ExpeditingkSle

Semiconductor Processors

Cartographers and Photogrammetrists

Metal-Refining Furnace Operators andefrsnd

Separating, Filtering, Clarifying, Rp&ating, and Still Machine Set-
ters, Operators, and Tenders

Extruding and Forming Machine Settersy&pes, and Tenders, Syn-
thetic and Glass Fibers

Terrazzo Workers and Finishers

Tool Grinders, Filers, and Sharpeners

Rail Car Repairers

Bakers

Medical Transcriptionists

Stonemasons

Bus Drivers, School or Special Client

Technical Writers

Riggers

Rail-Track Laying and Maintenance Equigr@gerators

Stationary Engineers and Boiler Opesator

Sewing Machine Operators

Taxi Drivers and Chauffeurs

Human Resources Assistants, Except Pagtblimekeeping

Medical and Clinical Laboratory Technaltsy

Reinforcing Iron and Rebar Workers

Roofers

Crane and Tower Operators

Traffic Technicians

Transportation Inspectors

Patternmakers, Metal and Plastic

Molders, Shapers, and Casters, Except Met@lastic

Appraisers and Assessors of Real Estate

Pump Operators, Except Wellhead Pumpers

Signal and Track Switch Repairers

Gaming and Sports Book Writers and Runners

Musical Instrument Repairers and Tuners

Tour Guides and Escorts

Mechanical Door Repairers

Food and Tobacco Roasting, Baking, anth@iachine Operators
and Tenders

Gas Compressor and Gas Pumping Stationt@pera

Medical Records and Health Informatiormiietans

Coating, Painting, and Spraying Machetéee®, Operators, and Ten-
ders

Multiple Machine Tool Setters, Operatamsl Tenders, Metal and Plas-
tic
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Computerisable

Rank  Probability soccode  Occupation

553. 0.91 53-4013 Rail Yard Engineers, Dinkey Operatord, Hostlers

554. 0.91 49-2093 Electrical and Electronics Installersl &epairers, Transportation
Equipment

555. 0.91 35-9011 Dining Room and Cafeteria Attendants aarteBder Helpers

556. 0.91 51-4191 Heat Treating Equipment Setters, Opsradmid Tenders, Metal and
Plastic

557. 0.91 19-4041 Geological and Petroleum Technicians

558. 0.91 49-3021 Automotive Body and Related Repairers

559. 0.91 51-7032 Patternmakers, Wood

560. 0.91 51-4021 Extruding and Drawing Machine Settergr@prs, and Tenders, Metal
and Plastic

561. 0.92 43-9071 Office Machine Operators, Except Computer

562. 0.92 29-2052 Pharmacy Technicians

563. 0.92 43-4131 Loan Interviewers and Clerks

564. 0.92 53-7031 Dredge Operators

565. 0.92 41-3021 Insurance Sales Agents

566. 0.92 51-7011 Cabinetmakers and Bench Carpenters

567. 0.92 51-9123 Painting, Coating, and Decorating Warker

568. 0.92 47-4031 Fence Erectors

569. 0.92 51-4193 Plating and Coating Machine Setters, &pe; and Tenders, Metal
and Plastic

570. 0.92 41-2031 Retail Salespersons

571. 0.92 35-3021 Combined Food Preparation and Servingéigrkacluding Fast Food

572. 0.92 51-9399 Production Workers, All Other

573. 0.92 47-3012 Helpers—Carpenters

574. 0.93 51-9193 Cooling and Freezing Equipment Operatmat§enders

575. 0.93 51-2091 Fiberglass Laminators and Fabricators

576. 0.93 47-5013 Service Unit Operators, Oil, Gas, and hdjni

577. 0.93 53-7011 Conveyor Operators and Tenders

578. 0.93 49-3053 Outdoor Power Equipment and Other Smalhérgechanics

579. 0.93 53-4012 Locomotive Firers

580. 0.93 53-7063 Machine Feeders and Offbearers

581. 0.93 51-4061 Model Makers, Metal and Plastic

582. 0.93 49-2021 Radio, Cellular, and Tower Equipment liestaand Repairs

583. 0.93 51-3021 Butchers and Meat Cutters

584. 0.93 51-9041 Extruding, Forming, Pressing, and Compabliachine Setters, Oper-
ators, and Tenders

585. 0.93 53-7081 Refuse and Recyclable Material Collsctor

586. 0.93 13-2081 Tax Examiners and Collectors, and Revkgets

587. 0.93 51-4022 Forging Machine Setters, Operators, andefs, Metal and Plastic

588. 0.93 53-7051 Industrial Truck and Tractor Operators

589. 0.94 13-2011 Accountants and Auditors

590. 0.94 51-4032 Drilling and Boring Machine Tool Sette@perators, and Tenders,
Metal and Plastic

591. 0.94 43-9051 Mail Clerks and Mail Machine Operators;éfit Postal Service

592. 0.94 35-3031 Waiters and Waitresses

593. 0.94 51-3022 Meat, Poultry, and Fish Cutters and Trimmers

594. 0.94 13-2031 Budget Analysts

595. 0.94 47-2051 Cement Masons and Concrete Finishers
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Rank  Probability Label soccode

Occupation

596. 0.94 49-3091
597. 0.94 49-9091
598. 0.94 51-4121
599. 0.94 1 43-5021
600. 0.94 43-4111
601. 0.94 35-2015
602. 0.94 53-7032
603. 0.94 47-3014
604. 0.94 43-4081
605. 0.94 51-9197
606. 0.94 41-9091
607. 0.94 37-1011
608. 0.94 45-2011
609. 0.94 1 23-2011
610. 0.95 39-5092
611. 0.95 43-5111
612. 0.95 51-6062
613. 0.95 43-3011
614. 0.95 51-8011
615. 0.95 33-9031
616. 0.95 43-4121
617. 0.95 47-2073
618. 0.95 51-5113
619. 0.95 45-2021
620. 0.95 51-4072
621. 0.95 1 51-2022
622. 0.95 51-9191
623. 0.95 37-3011
624. 0.95 51-4033
625. 0.95 43-5051
626. 0.95 51-9071
627. 0.96 43-5032
628. 0.96 43-4171
629. 0.96 43-9061
630. 0.96 11-3111
631. 0.96 1 43-2011
632. 0.96 35-3022
633. 0.96 47-5051
634. 0.96 43-6014
635. 0.96 17-3031
636. 0.96 51-7031
637. 0.96 51-6064
638. 0.96 53-4011
639. 0.96 1 39-3011

Bicycle Repairers

Coin, Vending, and Amusement Machine Saw/and Repairers

Welders, Cutters, Solderers, and Brazers

Couriers and Messengers

Interviewers, Except Eligibility and hoa

Cooks, Short Order

Excavating and Loading Machine and Dredliperators

Helpers—Painters, Paperhangers, felastend Stucco Masons

Hotel, Motel, and Resort Desk Clerks

Tire Builders

Door-to-Door Sales Workers, News andeS¥endors, and Related
Workers

First-Line Supervisors of HousekeepimJanitorial Workers

Agricultural Inspectors

Paralegals and Legal Assistants

Manicurists and Pedicurists

Weighers, Measurers, Checkers, and SamRezordkeeping

Textile Cutting Machine Setters, Opesatmd Tenders

Bill and Account Collectors

Nuclear Power Reactor Operators

Gaming Surveillance Officers and Gamingstigegors

Library Assistants, Clerical

Operating Engineers and Other CongtruEfjuipment Operators

Print Binding and Finishing Workers

Animal Breeders

Molding, Coremaking, and Casting Machiette®, Operators, and
Tenders, Metal and Plastic

Electrical and Electronic Equipment Agsers

Adhesive Bonding Machine Operators andéfs

Landscaping and Groundskeeping Workers

Grinding, Lapping, Polishing, and Buffitachine Tool Setters, Oper-
ators, and Tenders, Metal and Plastic

Postal Service Clerks

Jewelers and Precious Stone and Metalevéork

Dispatchers, Except Police, Fire, and Aanloe

Receptionists and Information Clerks

Office Clerks, General

Compensation and Benefits Managers

Switchboard Operators, Including AmsweService

Counter Attendants, Cafeteria, Food €sian, and Coffee Shop

Rock Splitters, Quarry

Secretaries and Administrative Assistdhtcept Legal, Medical, and
Executive

Surveying and Mapping Technicians

Model Makers, Wood

Textile Winding, Twisting, and Drawingt®lachine Setters, Opera-
tors, and Tenders

Locomotive Engineers

Gaming Dealers
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Rank  Probability Label soccode

Occupation

640. 0.96 49-9093
641. 0.96 35-2014
642. 0.96 39-3031
643. 0.96 43-3021
644. 0.97 53-6011
645. 0.97 51-7042
646. 0.97 51-2092
647. 0.97 51-6042
648. 0.97 51-2023
649. 0.97 1 13-1074
650. 0.97 51-6061
651. 0.97 51-9081
652. 0.97 51-9021
653. 0.97 51-9022
654. 0.97 37-3012
655. 0.97 45-4023
656. 0.97 51-9083
657. 0.97 1 41-2011
658. 0.97 49-9061
659. 0.97 39-3021
660. 0.97 51-5111
661. 0.97 41-2021
662. 0.97 1 43-4071
663. 0.97 41-9021
664. 0.97 43-2021
665. 0.97 19-4011
666. 0.97 43-3051
667. 0.97 1 43-4041
668. 0.97 35-9031
669. 0.98 41-9012
670. 0.98 51-9061
671. 0.98 43-3031
672. 0.98 43-6012
673. 0.98 27-4013
674. 0.98 53-3031
675. 0.98 1 13-1031
676. 0.98 41-2022
677. 0.98 1 13-2041
678. 0.98 51-4035
679. 0.98 43-5071
680. 0.98 43-3061
681. 0.98 51-9111
682. 0.98 51-9194
683. 0.98 43-3071
684. 0.98 27-2023
685. 0.98 13-1032
686. 0.98 1 13-2072

Fabric Menders, Except Garment

Cooks, Restaurant

Ushers, Lobby Attendants, and TicketrEake

Billing and Posting Clerks

Bridge and Lock Tenders

Woodworking Machine Setters, Operasmié Tenders, Except Sawing

Team Assemblers

Shoe Machine Operators and Tenders

Electromechanical Equipment Assemblers

Farm Labor Contractors

Textile Bleaching and Dyeing Machine @mes and Tenders

Dental Laboratory Technicians

Crushing, Grinding, and Polishing Maeh8etters, Operators, and
Tenders

Grinding and Polishing Workers, Hand

Pesticide Handlers, Sprayers, and Agipls, Vegetation

Log Graders and Scalers

Ophthalmic Laboratory Technicians

Cashiers

Camera and Photographic Equipment Repairer

Motion Picture Projectionists

Prepress Technicians and Workers

Counter and Rental Clerks

File Clerks

Real Estate Brokers

Telephone Operators

Agricultural and Food Science Techngian

Payroll and Timekeeping Clerks

Credit Authorizers, Checkers, and Glerk

Hosts and Hostesses, Restaurant, Loamgj€offee Shop

Models

Inspectors, Testers, Sorters, SampietsVaighers

Bookkeeping, Accounting, and Auditingrics

Legal Secretaries

Radio Operators

Driver/Sales Workers

Claims Adjusters, Examiners, and Investig

Parts Salespersons

Credit Analysts

Milling and Planing Machine Setters, @fmes, and Tenders, Metal
and Plastic

Shipping, Receiving, and Traffic Clerks

Procurement Clerks

Packaging and Filling Machine OperatodsT&nders

Etchers and Engravers

Tellers

Umpires, Referees, and Other Sports Qfficia

Insurance Appraisers, Auto Damage

Loan Officers
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Rank  Probability Label soccode Occupation

687. 0.98 43-4151 Order Clerks

688. 0.98 43-4011 Brokerage Clerks

689. 0.98 43-9041 Insurance Claims and Policy Processing<le
690. 0.98 51-2093 Timing Device Assemblers and Adjusters
691. 0.99 1 43-9021 Data Entry Keyers

692. 0.99 25-4031 Library Technicians

693. 0.99 43-4141 New Accounts Clerks

694. 0.99 51-9151 Photographic Process Workers and Piogedachine Operators
695. 0.99 13-2082 Tax Preparers

696. 0.99 43-5011 Cargo and Freight Agents

697. 0.99 49-9064 Watch Repairers

698. 0.99 1 13-2053 Insurance Underwriters

699. 0.99 15-2091 Mathematical Technicians

700. 0.99 51-6051 Sewers, Hand

701. 0.99 23-2093 Title Examiners, Abstractors, and Seesche
702. 0.99 41-9041 Telemarketers
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