La guerre post-humaniste 2 : Géopolitique du génome

La prolifération de nouveaux éléments nous pousse à prolonger notre dossier du numéro précédent, à propos des initiatives dans la modification génétique à l’international.

Actualités touchant le génome

Les CAR-T cells permettent de traiter certains cancers du sang en modifiant génétiquement les cellules du patient. Le CAR (Chimeric Antigen Receptor) est un récepteur antigénique chimérique que l’on intègre par modification génétique aux cellules immunitaires du patient (les lymphocytes T) afin qu’elles identifient et attaquent les cellules tumorales. Ce ne serait ni plus ni moins « la découverte de l’année », selon la puissante association américaine de cancérologie ASCO. Selon les premiers résultats, le taux de rémission est de 83 % pour les patients traités au CAR-T cells contre environ 15 % pour les autres enfants et adultes jusqu’à 25 ans atteints de leucémie aiguë réfractaire. Dans le cas de patients atteints d’un lymphome diffus à grandes cellules B réfractaire, une rémission complète ne toucherait que 5 à 10 % des individus traités avec une chimiothérapie conventionnelle contre 40 % de rémission complète 15 mois après le traitement par CAR-T. Les deux hôpitaux parisiens Saint-Louis et Robert-Debré seront les premiers labellisés « centres experts pour le traitement par cellules CAR-T » en Europe. Toujours en France, l’Agence nationale de sécurité du médicament et des produits de santé (ANSM) a délivré aux laboratoires américains, Gilead Sciences et Kite (sa filiale axée sur la thérapie cellulaire autologue T), et au groupe pharmaceutique suisse Novartis des autorisations temporaires d’utilisation (ATU) de ces traitements, nécessaires avant une possible autorisation de mise sur le marché (AMM).

Le laboratoire pharmaceutique Glaxosmithkline ou GSK (l’un des plus gros au monde) a annoncé le rachat des données génétiques de 5 millions de clients au spécialiste US de l’analyse génétique 23andMe (un des plus grands fabricants de tests ADN à domicile) pour un coût de 300 M$. Ces clients ont transmis leur salive à la société pour en savoir plus sur leur ADN, leur ascendance et ainsi obtenir des rapports de santé personnalisés. GSK a racheté toutes ces informations pour leurs études pharmaceutiques. Plus de 5 millions de personnes ont envoyé un échantillon de salive en échange d’informations, notamment sur leur risque de développer un cancer du sein.

Avec la manipulation génétique, une équipe de scientifiques de l’Université de Californie à Los Angeles (UCLA) a réussi à transférer la mémoire d’un escargot de mer à un autre, le 14 mai dernier. L’expérience, décrite dans la revue scientifique eNeuro, consiste à stimuler la mémoire des escargots grâce à une sensibilisation par faible choc électrique sur la queue. En provoquant leur réflexe défensif de contraction de la queue, les escargots « entraînés » après 24 h, contractent ce membre pendant cinquante secondes contre une seconde pour les « non entraînés ». L’ARN (acide nucléique essentiel dans le transport du message génétique et la synthèse des protéines) du système nerveux des escargots entraînés est ensuite extrait pour l’injecter dans les spécimens non entraînés. Vingt-quatre heures plus tard, ces derniers avaient le même réflexe de défense que les escargots ayant subi des chocs électriques. À terme, les chercheurs espèrent transférer la mémoire d’un humain à un autre. Une expérience qui fait penser à celle réalisée fin 2017, où le collectif OpenWorms avait entrepris d’analyser minutieusement le cerveau du ver Caenorhabditis elegans pour le reproduire virtuellement et le télécharger dans un robot Lego. Résultat : sans aucune programmation, le cerveau virtuel a pris le contrôle du robot, qui s’est comporté comme l’animal et a même réagi à la simulation des capteurs de nourriture destinés au ver.

La guerre post-humaniste

Les ciseaux moléculaires CRISPR et la course à la modification génétique

Actuellement, un nouveau projet international est en cours pour réécrire entièrement le génome humain. Le séquençage du génome, qui consiste à identifier tous les gènes de notre espèce, avait déjà pris 13 années. L’objectif de ce nouveau programme nommé Recode est de créer un génome 100 % synthétique. Si l’objectif reste généralement thérapeutique dans un premier temps, se posent toujours des questions éthiques, à différents niveaux selon les espaces civilisationnels [cf. Géopolitique Profonde n° 6].

Réécrire un génome, c’est une sorte de formatage ou de remise à zéro des gènes humains. Le qualificatif de « modifié génétiquement » se réfère à des plantes et des animaux qui ont été modifiés d’une manière qui ne serait pas apparue naturellement à travers l’évolution, comme le transfert d’un gène d’une espèce à une autre pour doter l’organisme d’un nouveau caractère (résistance aux parasites ou une tolérance accrue à la sécheresse). L’entreprise biopharmaceutique Cellectis a par exemple créé son outil d’édition de génome appelé TALEN en association avec l’Institut Wyss de Harvard pour couper l’ADN, ôter, coller, modifier toutes les mutations, tous les défauts ou toutes les particularités acquises au cours de milliers d’années d’évolution.

Pour l’exemple, l’agence militaire étasunienne DARPA (Defense Advanced Research Projects Agency) et le ô grand milliardaire philanthrope Bill Gates auraient investi 100 M$ dans le « forçage génétique ». Cette technique de manipulation génétique a pour but de modifier un gène pour qu’il soit ensuite rapidement transmissible à toute une espèce animale ou végétale. Ceci pourrait, par exemple, limiter la capacité de reproduction d’une espèce, la rendre plus sensible ou insensible à une maladie ou à un produit chimique. Des expérimentations pourraient se dérouler en Australie, en Nouvelle-Zélande, au Burkina Faso, en Ouganda, au Mali et au Ghana. La Fondation Bill & Melinda Gates aurait au passage également consacré 1,6 M$ en lobbying via la société Emerging A.G pour promouvoir cette expérimentation.

Aujourd’hui, ce sont les technologies d’édition de gènes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) qui sont les plus médiatisées. Elles permettent d’introduire de nouveaux caractères en réécrivant directement le code génétique de la cible (végétaux, animaux, humains). Dans l’agriculture, cela présente l’avantage d’être plus rapide et plus précis que la culture conventionnelle (sélection des plantes), tout en étant moins controversé que les techniques OGM. En 2012, l’outil d’édition génique CRISPR-Cas9 émerge de la collaboration des chercheuses française Emmanuelle Charpentier et américaine Jennifer Doudna avec la publication de leurs recherches à l’Université de Californie à Berkeley.

CRISPR se traduit littéralement par « Courtes répétitions palindromiques groupées et régulièrement espacées ». Il s’agit de famille de séquences répétées dans l’ADN. Le deuxième terme Cas9, quant à lui, renvoie à l’endonucléase, une enzyme capable de couper les deux brins de l’hélice d’ADN. En combinant les deux, on obtient les « ciseaux moléculaires » CRISPR-Cas9 qui permettent d’éditer le génome, de couper l’ADN, d’inactiver des gènes ou d’en introduire. Ses applications peuvent être plurielles dans la recherche fondamentale, la médecine et la biotechnologie. La simplicité de cette technique et son bas coût peuvent amener à des dérives multiples, dans la manipulation d’embryons par exemple.

Contrairement aux deux méthodes de coupures d’ADN 1) des protéines TALEN (Transcription activator-like effector nucleases – nucléases effectrices de type activateur de transcription) et 2) des nucléases à doigt de zinc — le ciblage de l’ADN par le procédé CRISPR-Cas9 est plus direct et ne requiert pas de modification de la protéine, mais seulement de l’ARN guide. De nombreuses sociétés investissent dans la recherche sur ce nouvel outil d’altération génétique.

Le US Patent and Trademark Office (USPTO – Bureau américain des brevets et des marques de commerce) a accordé deux nouveaux brevets CRISPR à l’Université de Californie à Berkeley. En 2017, l’instance a accordé à Feng Zhang et à son équipe du Broad Institute of Harvard et du MIT un autre brevet convoité pour utiliser l’outil CRISPR-Cas9 dans l’édition d’ADN de mammifères : il y a une bataille juridique pour déterminer lequel des scientifiques devient propriétaire, car l’équipe de Jennifer Doudna a fait appel de cette décision. Ce 10 septembre 2018, la Cour d’appel des États-Unis a confirmé cette dernière décision du USPTO. Le brevet donne à un inventeur la propriété légale de son invention ou découverte. Il est le seul à pouvoir donner l’autorisation à quiconque voulant utiliser son idée et collecter l’argent de l’octroi de la licence.

Deux sociétés américaines, Indoor Technologies et Felix Pets, se font concurrence pour modifier génétiquement des embryons de chats afin de les rendre hypoallergéniques, c’est-à-dire qu’il ne présenteraient plus le gène qui provoque des allergies aux humains. Des brevets ont été déposés en 2016 pour utiliser le Crispr-Cas9 pour couper le gène bien identifié qui provoque l’allergie, la protéine Fel d 1.

L’américain Sangamo Therapeutics a testé un procédé d’édition du génome in vivo destiné à lutter contre le rare syndrome de Hunter (maladie génétique lysosomale) sur quatre personnes. Les premiers résultats non réussis de son essai clinique ont été publiés. Les médecins ont utilisé les nucléases à doigt de zinc en tant que ciseau moléculaire et non CRISPR.

L’utilisation de CRISPR sur l’Homme est plus compliquée à tester en raison des réflexions éthiques que le procédé suscite. Les premiers essais cliniques utilisant CRISPR sur l’être humain ont débuté rapidement, avec un recul encore probablement insuffisant. En 2017, des scientifiques américains de l’Oregon Health & Science University ont franchi un cap en déclarant utiliser cette technologie pour éditer des embryons humains après deux ans d’attente pour l’autorisation éthique de leurs expériences. L’hôpital de l’Université de Pennsylvanie et l’agence US de régulation Food and Drug Administration (FDA) ont mis tout autant de temps à obtenir le feu vert pour tester une thérapie basée sur CRISPR sur 18 patients cancéreux. La société CRISPR Therapeutics de Cambridge (Massachusetts) aimerait aussi démarrer des essais cliniques de phase I en utilisant CRISPR pour traiter des patients atteints du trouble bêta-thalassémies (maladie génétique de l’hémoglobine). L’américain Editas Medicine doit également lancer sous peu un essai clinique utilisant la technique CRISPR pour traiter une forme rare de cécité.

Au vu des ralentissements prudents de la FDA à propos des essais cliniques sur l’Homme sur le sol américain depuis mai 2018, un premier essai clinique utilisant CRISPR-Cas9 chez l’homme a été lancé à l’hôpital de Ratisbonne (Allemagne). Deux sociétés US, Vertex Pharmaceuticals et CRISPR Therapeutics, se sont associées pour développer le traitement expérimental CTX001. L’essai clinique (phase 1/2) compte douze adultes atteints de bêta-thalassémie (maladie génétique de l’hémoglobine) pour prélèvement de leurs cellules sanguines, traitement in vitro et réinjection. C’est la course aux essais cliniques.

Chez les Britanniques, l’organisme de bienfaisance indépendant basé à Londres Nuffield Council on Bioethics (NCB) a pondu un rapport sur les problèmes sociaux et éthiques liés à l’édition et à la reproduction du génome humain. Le bienfaiteur autoproclamé a pour habitude d’analyser les questions éthiques en biologie et en médecine. Selon sa récente étude, l’édition d’embryons, de spermatozoïdes et des ovules humains est « moralement acceptable» sous la condition que « la modification ne compromette pas le bien-être de l’individu en devenir (la personne issue de l’embryon qui aura subi une édition génétique) ou que cela n’augmente pas le désavantage, la discrimination ou la division dans la société ».

Au Japon, les autorités étudient une autorisation prochaine de la recherche fondamentale sur les modifications génétiques des embryons humains (avec l’outil CRISPR-Cas9), dans le cadre de la recherche sur les traitements de procréation assistée. La validation de la directive est prévue d’ici avril 2019 après consultation de la population. Les embryons altérés seront ceux issus de fécondation in vitro non utilisés. Il sera interdit de les réimplanter dans l’utérus de femmes après modification. Nous voilà rassurés.

La Chine lance également des programmes de thérapie génique d’envergure internationale. La belliciste banque Goldman Sachs juge que « la Chine bat les États-Unis dans la course aux armements géniques ». Dès 2013, les scientifiques chinois ont utilisé CRISPR sur l’ADN humain, et en avril 2015, ils ont modifié directement sur des embryons un gène responsable d’une maladie du sang. Les embryons non viables n’ont pas survécu, mais la polémique a marqué les esprits. Les scientifiques du pays ont modifié génétiquement les cellules d’au moins 86 patients atteints du cancer et du VIH dans le pays en utilisant la technologie CRISPR-Cas9.

La course scientifique entre les deux superpuissances asiatique et nord-américaine est tellement intense qu’elle est qualifiée de « Spoutnik 2.0 » en référence à la concurrence spatiale opposant l’URSS et les USA durant la Guerre froide. L’École de Guerre économique a relevé qu’une équipe chinoise a fait naître des chiens de race beagles en supprimant le gène de la myostatine (protéine qui inhibe la croissance musculaire). En conséquence, les animaux sont nés avec une masse musculaire doublée par rapport à celle habituellement admise. On imagine très bien les perspectives sur l’Homme.

Contrebalançant l’enthousiasme entourant toutes ces nouvelles techniques, des scientifiques du Centre Wellcome Sanger ont récemment établi dans la revue Nature Biotechnology que l’édition de gènes CRISPR-Cas9 produit des altérations voire des suppressions dangereuses d’ADN dans les cellules de souris et d’homme. D’autres études récentes publiées dans Nature Medicine montrent que la modification des génomes avec CRISPR-Cas9 pourrait augmenter le risque que les cellules altérées déclenchent un cancer (des ovaires, du côlon, du rectum ou de l’œsophage). Des chercheurs de l’Institut suédois Karolinska et, séparément, de Novartis ont constaté que les cellules dont les génomes sont édités avec succès par CRISPR-Cas9 ont le potentiel d’ensemencer des tumeurs à l’intérieur d’un patient. Les deux études se concentrent sur le gène p53 qui joue un rôle majeur dans la prévention des tumeurs en détruisant des cellules avec de l’ADN endommagé. Selon des recherches antérieures, la plupart des tumeurs humaines ne peuvent tout simplement pas se former si la cellule p53 fonctionne correctement. Si elle est dysfonctionnelle, le risque de cancers pourrait être plus élevé. Malheureusement, p53 est aussi une sorte de défense naturelle contre les modifications du génome faites par CRISPR-Cas9. Lorsque les chercheurs utilisent ces ciseaux moléculaires pour couper et remplacer un peu d’ADN, p53 passe à l’action, provoquant l’autodestruction des cellules éditées. Cela rend l’édition CRISPR essentiellement théorique, ce qui pourrait expliquer pourquoi la méthode ne serait pas si efficace.

La version CRISPR-Cas12 serait encore plus précise et spécifique que le Cas9, qui ne reconnaît que 2 ou 3 nucléotides pour se fixer solidement à l’ADN. CRISPR-Cas12 « agit plus comme un velcro, en multipliant les liaisons faibles. Tous les nucléotides de la séquence génétique doivent être reconnus pour qu’une fixation solide se fasse ». Une utilisation généralisée de ce procédé devrait être prochainement mise en place.

Franck Pengam
Extrait de Géopolitique Profonde n°7 – Septembre-Octobre 2018

UC Berkeley finalise une victoire avec deux brevets CRISPR

Il y a eu une bataille juridique pour déterminer lequel des scientifiques dont la recherche a mené à la découverte de CRISPR devient propriétaire (et collecter de l’argent de l’octroi de licence).

Le US Patent and Trademark Office (USPTO) vient de décider d’accorder non pas un, mais deux nouveaux brevets CRISPR à UC Berkeley, la maison de la biochimiste Jennifer Doudna, que beaucoup considèrent comme l’inventrice de la méthode CRISPR.

Un brevet confère à un inventeur la propriété légale de son invention ou découverte unique. Si quelqu’un d’autre veut utiliser cette invention, il doit obtenir le feu vert du propriétaire du brevet, et doit généralement payer pour le privilège. Et quand vous considérez le formidable potentiel de CRISPR, et les différents domaines dans lesquels il peut être utilisé, vous commencez à avoir une idée de l’utilité des brevets CRISPR.

En 2012, Doudna et ses collègues ont mis en branle la révolution CRISPR en publiant le premier article sur l’enzyme dans Science. Mais en 2017, l’USPTO a accordé à Feng Zhang et à son équipe du Broad Institute of Harvard et du MIT le brevet convoité pour l’utilisation de CRISPR-Cas9 pour éditer l’ADN chez les mammifères. L’équipe de Doudna fait appel de cette décision, mais elle doit faire face à une bataille difficile.

Alors que le brevet CRISPR-Cas9 actuellement détenu par l’équipe Broad est sans doute le plus précieux, et non le seul brevet CRISPR existant. En avril, l’USPTO avait déjà délivré 60 brevets liés à CRISPR aux inventeurs de 18 organisations différentes, chacune étant suffisamment différente pour que l’USPTO la considère comme une invention unique.

Mardi, le bureau a accordé à l’UC Berkeley son premier brevet relatif à CRISPR, demandé par l’université en 2014. Celui-ci se concentre sur l’utilisation de CRISPR-Cas9 pour éditer l’ARN simple brin (et non l’ADN).

L’USPTO accordera à UC Berkeley l’autre brevet que l’université a demandé en 2015, la semaine prochaine, selon un rapport de STAT News. Ce brevet est basé sur l’utilisation du système CRISPR-Cas9 standard pour éditer des régions de 10 à 15 paires de bases. L’UC Berkley voit un certain nombre d’applications potentielles dans la recherche, le diagnostic et l’industrie pour son nouveau brevet CRISPR.

Mais le reste de la communauté scientifique le voit différemment. Un porte-parole du Broad a déclaré à STAT que les revendications du brevet délivré “sont extrêmement étroites et auraient peu ou pas d’effet sur le domaine CRISPR.” Un autre expert, Jacob Sherkow, professeur agrégé à la New York Law School, a déclaré que le deuxième brevet aura une valeur commerciale assez minime.

Peu importe l’importance de ces brevets spécifiques, le nombre de brevets délivrés témoigne du nombre de recherches consacrées à CRISPR. Et il n’est pas impossible que le Broad les conteste de toute façon.

STAT News, Futurism

L’UC Berkeley met en doute la décision selon laquelle les brevets CRISPR appartiennent au Broad Institute

La bataille judiciaire pourrait se poursuivre pendant des mois, voire des années

L’University of California, Berkeley, fait appel d’une décision selon laquelle les brevets relatifs à l’outil d’édition génétique CRISPR appartiennent au Broad Institute du MIT et Harvard. Cela signifie que la bataille acharnée pour définir qui possède les inventions biotech les plus révolutionnaires de l’époque continuera encore pendant plusieurs mois, voire plusieurs années.

En février dernier, le Conseil d’examen et de procédure des brevets des États-Unis (PTAB) a établi que les brevets dont le Broad Institute est propriétaire sont suffisamment différents de ceux déposés par l’UC Berkeley. Cette décision suggère que le travail réalisé par Jennifer Doudna de l’UC Berkeley et ses collègues sur CRISPR n’était pas fondamentalement novateur pour mettre en évidence une quelconque avancée en la matière.

L’UC Berkeley est convaincue que les brevets se chevauchent, et fait appel auprès de la Cour d’appel des États-Unis pour le Circuit Fédéral à Washington, DC. Broad, pour sa part, semble confiant quant au fait que cet appel ne mènera nulle part. « Étant donné que les faits n’ont pas changés, nous espérons que la décision sera la même » a confié Lee McGuire, responsable de la communication chez Broad. « Nous sommes confiants que le Circuit Fédéral confirmera la décision du PTAB et reconnaîtra la contribution de Broad, du MIT, et de Harvard dans de développement de cette technologie transformatrice. »

Le Broad Institute remporte une rude bataille pour les brevets CRISPR
Pourquoi le verdict sur les brevets CRISPR n’est pas terminé ?

CRISPR-Cas9 est une technique qui permet aux scientifiques de couper l’ADN, afin d’y insérer ou de réorganiser des morceaux de code génétique avec une précision et des résultats inouïs. L’outil d’édition génétique a déjà fait ses preuves lors de la création de moustiques ne transmettant pas la malaria, des chiens beagles anormalement musclés, et de cochons domestiques miniatures. Dans le futur, CRISPR pourrait changer notre façon de combattre le cancer et aider à traiter des maladies génétiques invalidantes telles que la drépanocytose et la mucoviscidose.

Son potentiel est illimité. Et celui ou celle qui détiendra la propriété intellectuelle de cette technologie sera immensément riche et célèbre. Le nombre de brevets liés à CRISPR est estimé à plusieurs milliards de dollars. On comprend alors mieux la bataille judiciaire violente à laquelle se livrent les deux parties impliquées dans le conflit : l’University of California, Berkeley et la microbiologiste Emmanuelle Charpentier d’un côté, et le Broad Institute et le MIT de l’autre. Cela fait plusieurs années qu’ils se livrent un combat acharné, dépensant des millions de dollars par la même occasion.

Le potentiel de CRISPR est illimité

Tout a commencé en 2012, lorsque Doudna et ses collègues, dont Charpentier, ont publié un article majeur sur CRISPR dans Science. Dans cet article, Doudna montrait que cette technologie d’édition génétique pouvait, dans un tube à essai, entailler de l’ADN à des sites précis. Plus tard, Doudna a déposé une demande de brevet pour CRISPR.

Puis en 2013, dans un autre article dans Science, le bio-ingénieur du MIT Feng Zhang et son équipe ont rapporté avoir développé un système CRISPR capable d’éditer des génomes de cellules eucaryotes (animales et humaines). Lorsque Zhang a déposé sa propre demande de brevet, il l’a fait auprès du Bureau américain des brevets et des marques de commerce (PTO) pour accélérer la procédure d’étude de demande de brevet. Il en est résulté que, bien que l’UC Berkeley ait déposé une demande avant celle de Zhang, le PTO a en réalité alloué le brevet à Broad et au MIT en avril 2014. (Broad et le MIT se sont ensuite vus alloués tout un tas de brevets relatifs à CRISPR). A ce moment-là, l’UC Berkeley a demandé une « procédure d’interférence » (qui implique que le cas soit officiellement réétudié afin de définir qui est le premier à avoir inventé l’outil d’édition génétique CRISPR-Cas9).

A l’issue de la procédure, en janvier de l’année dernière, et en décembre 2016, les deux parties se sont livrées une véritable bataille lors d’une audition à Alexandria en Virginie. Lors de l’audition, les avocats de l’UC Berkeley ont fait valoir que suite à la publication de l’article de Doudna en 2012, n’importe qui aurait pu faire usage de la technique pour éditer des cellules eucaryotes. Autrement dit, l’utilisation de CRISPR par Zhang était un développement « logique » de la technologie et que ses brevets n’avaient aucun mérite, déclare l’UC Berkeley. Les avocats de Broad ont violemment opposé les arguments selon lesquels l’utilisation de CRISPR faite par Zhang afin d’éditer des organismes complexes tels que des cellules humaines constituait une avancée plus considérable et qu’il méritait donc les brevets en question.

En février, le PTAB a décidé d’en finir avec cette affaire, mais aujourd’hui, l’UC Berkeley a décidé de relancer la procédure. « Au final, nous espérons faire établir la preuve que l’équipe menée par Jennifer Doudna et Emmanuelle Charpentier fut la première à mettre au point CRISPR-Cas9 pour une utilisation dans tous types d’environnements, y compris dans des dispositifs non cellulaires ou dans des plantes, des animaux ou encore des cellules humaines » a déclaré Edward Penhoet, conseiller spécial pour CRISPR à l’University of California.

Le mois dernier, l’Office européen des brevets a annoncé qu’il attribuerait le brevet à l’University of California pour l’utilisation de CRISPR à la fois dans des systèmes procaryotes et eucaryotes : une décision qui va à l’encontre de la décision prise par la Bureau américain des brevets et des marques de commerce (PTO).

traduction Virginie Bouetel

The Verge

Pourquoi le verdict sur les brevets CRISPR n’est pas terminé ?

Des recours juridictionnels en expérimentations en cours, l’histoire expliquant qui possède les droits relatifs à l’édition génétique par CRISPR–Cas9 est loin d’être finie

Le US Patent and Trademark Office (USPTO ou bureau des brevets et des marques de commerce des États-Unis) a rendu un verdict clé cette semaine dans la bataille concernant les droits de propriété intellectuelle associés à la technologie potentiellement lucrative d’édition génétique par CRISPR-Cas9.

L’USPTO a statué sur le fait que le Broad Institute de Harvard et le MIT à Cambridge pouvaient garder ses brevets sur l’utilisation de CRISPR-Cas9 sur des cellules eucaryotes. C’était un coup dur pour l’Université de Californie à Berkeley qui avait déposé ses propres brevets et espérait que ceux de Broad soient rejetés.

La bataille remonte à 2012, lorsque Jennifer Doudna à Berkeley, Emmanuelle Charpentier, alors à l’Université de Vienne, et leurs collègues, ont mis en évidence comment CRISPR-Cas9 pouvait être utilisée pour couper avec précision de l’ADN isolé. En 2013, Feng Zhang du Broad Institute de Harvard et ses collègues – ainsi que d’autres équipes – ont montré que CRISPR-Cas9 pouvait être utilisée pour éditer l’ADN de cellules eucaryotes de plantes, de bétail, et d’humains.

Berkeley a déposé un brevet plus tôt, mais l’USPTO a reconnu les brevets du Broad Institute en premier – décision qui a été maintenue cette semaine. Ce jugement implique de gros enjeux. Les propriétaires de brevets clés pourraient tirer des millions de dollars des applications industrielles de CRISPR-Cas9. La technique a d’ores et déjà donné un coup d’accélérateur à la recherche en génétique, et des scientifiques l’utilisent pour développer des animaux d’élevage résistant à certaines maladies ainsi que des traitements pour les maladies humaines.

Mais la bataille pour les droits de brevet de la technologie CRISPR est loin d’être terminée. Voici quatre raisons qui expliquent cette situation :

1. Berkeley peut faire appel de cette décision

Berkeley dispose de deux mois pour faire appel de la décision de l’USPTO, et il y a de fortes chances qu’elle le fasse. Une question clé est dans quelle mesure Berkeley a confiance dans le fait que ses propres brevets, une fois accordés, puissent couvrir les applications les plus lucratives en matière d’édition génétique chez les cellules eucaryotes, telles que générer de nouveaux végétaux destinés à l’agriculture ou encore développer des thérapies humaines.

La victoire de Broad est due à une différence essentielle : ses brevets précisent que CRISPR pourrait être adaptée afin d’être utilisée sur des cellules eucaryotes. Les brevets déposés par Berkeley n’ont pas précisé ce point. L’USPTO a ainsi donné droit à Broad en expliquant que les brevets de ce dernier n’interféraient pas avec ceux de Berkeley et qu’ils pouvaient, par conséquent, être reconnus. L’équipe de Berkeley a rapidement réagi, dès l’annonce du verdict, arguant que son brevet (si ce dernier est reconnu dans son état actuel) pouvait inclure l’utilisation de CRISPR-Cas9 sur n’importe quel type de cellule. Et l’équipe d’ajouter que ceci implique toute personne désireuse de vendre un produit résultant de l’utilisation de CRISPR-Cas9 dans des cellules eucaryotes aurait besoin de contracter une licence d’utilisation auprès de Berkeley et de Broad.

A ce stade, les détails de la décision prise par l’USPTO pourraient affaiblir les chances de Berkeley de renforcer les brevets relatifs aux cellules eucaryotes, ont déclaré des spécialistes des droits des brevets. Par exemple, la plupart des 50 pages de décision de l’USPTO avancent que l’utilisation de CRISPR-Cas9 dans des cellules eucaryotes (décrite dans le brevet déposé par Broad) requiert des inventions supplémentaires à celles décrites dans le brevet d’application de Berkeley.

Donc Berkeley a le sentiment qu’elle doit encore faire appel de cette décision. Et sa propriété intellectuelle fait déjà l’objet de licences d’utilisation par plusieurs compagnies souhaitant déployer la technologie CRISPR-Cas9 dans des cellules eucaryotes. Ces compagnies n’apprécieront sans doute pas d’avoir à payer une licence supplémentaire auprès de Broad pour poursuivre leurs travaux.

2. Les brevets européens sont encore disponibles

Les deux équipes ont déposé des brevets similaires en Europe et continuent de se battre pour ces derniers là-bas.

Une décision en Europe ne suivra pas nécessairement le même processus que celui de l’USPTO, fait remarquer Catherine Coombes, avocat spécialiste des brevets au sein de l’équipe propriété intellectuelle chez HGF à York (UK).

Selon la jurisprudence, l’Office européen des brevets (European Patent Office) pourrait déclarer que la découverte du système global d’édition génétique décrit dans le brevet déposé par Berkeley a été le moteur d’une « motivation suffisante » pour qu’on essaye de l’appliquer à des cellules eucaryotes. Si les juges européens en arrivent à cette conclusion, ils pourraient donc statuer que le brevet de Berkeley englobe les applications de CRISPR-Cas9 sur les cellules eucaryotes.

Cela donnerait un avantage à Berkeley, avantage qui lui manque aux USA. « Le fait que six groupes aient réussi à faire fonctionner CRISPR-Cas9 dans un environnement eucaryote en quelques semaines seulement montre l’ampleur de la motivation dans ce domaine » remarque Coombes.

Malgré tout, il y a peu de chances qu’une solution rapide soit apportée à la bataille qui se joue également en Europe. Coombes estime que les débats pourraient durer encore cinq ans, voire plus.

3. D’autres équipes défendent également les droits et brevets de CRISPR-Cas9

L’attention s’est portée sur la bataille Berkeley–Broad du fait que leurs brevets couvrent un champ d’action particulièrement vaste et qu’ils sont déterminants pour la plupart des applications commerciales de CRISPR-Cas9. Mais, selon l’entreprise IPStudies (à côté de Lausanne en Suisse), il existe 763 ensembles de brevets (groupes de brevets associés) relatifs à Cas9. Parmi ces derniers, certains réclament des droits d’utilisation pour certains aspects de l’édition génétique par CRISPR-Cas9. Et avec le temps, les propriétaires de ces brevets pourraient essayer de faire valoir leurs droits.

Cela n’arrivera peut-être pas jusqu’à ce que les compagnies utilisant CRISPR-Cas9 commencent à faire de l’argent à partir de leurs produits. Alors, n’importe qui possédant un brevet similaire pourrait engager des poursuites en justice pour infraction ou demander des royalties.

Quand ce temps arrivera, il faudra s’attendre à un nombre considérable de plaintes déposées par les propriétaires de brevets, alerte Jacob Sherkow, spécialiste de la propriété intellectuelle à la New York Law School à New York. « N’importe qui, ainsi que ses cousins et petits cousins, affirmera qu’il est intervenu à un moment ou un autre dans l’invention qui a mené au dépôt du brevet de Broad » déclare t’il. « Broad doit se préparer à des années de batailles ».

4. La technologie CRISPR va bien au-delà de ce que les brevets couvrent actuellement

Les chercheurs, qu’ils travaillent pour une structure académique ou pour l’industrie, ont poussé les études sur l’édition génétique par CRISPR bien au-delà du périmètre des brevets de Broad et de Berkeley.

Tous ces brevets impliquant l’utilisation de CRISPR-Cas9 s’appuient sur la capacité de l’enzyme Cas à inciser de l’ADN. Mais il existe des solutions de rechange à Cas9, qui possèdent d’autres fonctions, et qui constituent des moyens de contourner la bataille de brevets dans laquelle sont engagés Broad et Berkeley.

Cpf1 une alternative à CRISPR-Cas9 ?

Parmi ces solutions de rechange, Cpf1, une enzyme potentiellement plus simple à utiliser et plus précise que cas9 dans certains cas. Broad a déjà déposé des brevets relatifs aux applications de Cpf1 dans l’édition génétique, et vendu les licences à la compagnie biotechologies Editas Medicine à Cambridge au Massachusetts (qui a également contracté des licences auprès de Broad pour l’utilisation de CRISPR-Cas9). Si l’on en croit IPStudies, au total, 28 groupes demandent des brevets relatifs à Cpf1, et toutes ces demandes n’émanent pas de Broad.

Des rapports relatifs à d’autres enzymes se propagent. En décembre, des chercheurs de Berkeley ont affirmé qu’ils avaient découvert deux nouvelles alternatives à Cas9, CasX et CasY. Et des chercheurs sont peut-être déjà en train de déposer des brevets sur des solutions de rechange non publiées. En général, l’application d’un brevet aux USA ne devient publique que 18 mois après le dépôt.

Sherkow assimile la situation actuelle à celle qu’a vécut la PCR (polymerase chain reaction, c’est-à-dire amplification en chaîne par polymérase ou réaction en chaîne par polymérase) à ses débuts. La PCR est une technique utilisée pour amplifier des segments d’ADN très rapidement devenue incontournable en biologie moléculaire. Les laboratoires utilisaient initialement une seule enzyme, la Taq1 polymérase, pour mener à bien le protocole. « Maintenant, si vous parcourez le catalogue, il y a pour ainsi dire un entrepôt Amazon de polymérases que l’on peut utiliser en fonction de la réaction particulière souhaitée», déclare t’il.

Les gens associent les aspects commerciaux de CRISPR à cette étonnante bataille de brevets, constate Sherkow. « C’est passer à côté du contexte bien plus général de la situation. »

traduction Virginie Bouetel

Nature doi:10.1038/nature.2017.21510

Le Broad Institute remporte une rude bataille pour les brevets CRISPR

Le US Patent and Trademark Office rend son verdict dans un litige portant sur les droits afférents à la technologie de la modification génomique.

Le bureau des brevets et des marques de commerce des États-Unis, (USPTO), a maintenu la validité d’une série de brevets visant la technologie de la modification génomique CRISPR–Cas9 octroyés au Broad Institute du MIT et de Harvard.

Cette décision très attendue pourrait résoudre le litige opposant le Broad Institute de Cambridge, au Massachusetts, et l’université de Californie qui porte sur les droits de propriété intellectuelle de cette technologie possiblement lucrative. Bien que le Broad s’est vu accorder ses brevets en premier, c’est l’université de Californie qui avait déposé la première une demande de brevet pour cette technologie. Le contingent californien allègue de plus que c’est son équipe de Berkley qui a inventé la technique avant les chercheurs du Broad.

Les avocats représentant l’université de Californie ont déposé une « procédure en revendication de priorité d’invention » dans le but de voir les brevets du Broad rejetés. Mais le 15 février, les juges chargés des brevets ont conclu qu’il n’y avait pas lieu à revendiquer une priorité d’invention, ce qui signifie que l’invention du Broad diffère de celle de l’université de Californie et que les brevets du Broad demeureront en vigueur. La demande de brevet de l’université de Californie sera maintenant examinée de nouveau, mais les contestations judiciaires pourraient se poursuivre.

Perspectives incertaines

Dans le cadre de la procédure en revendication de propriété d’invention, annoncée en janvier 2016, les avocats du Broad ont allégué que la demande de brevet de l’université de Californie ne portait aucune mention quant à la façon dont l’édition CRISPR–Cas9 pourrait être adaptée pour utilisation sur des cellules eucaryotes, comme celles des souris ou des humains. Les brevets du Broad le mentionnaient; par conséquent, les avocats ont fait valoir que les deux familles de brevets n’empiéteraient pas l’une sur l’autre. Cette stratégie donnerait au Broad le contrôle sur ce qui semble bien être les applications les plus lucratives de la modification génomique CRISPR–Cas9 sur les plantes, le bétail et les humains.

Dans la foulée du jugement de l’USPTO, les représentants de l’université de Californie ont toutefois déclaré que leur brevet couvrirait néanmoins l’utilisation du CRISPR–Cas9 dans toutes les cellules, eucaryotes ou autres. L’un des inventeurs du brevet, la biologiste moléculaire Jennifer Doudna de l’université de Californie, à Berkeley, a comparé cette situation au fait de concéder une licence à une personne souhaitant utiliser des balles de tennis vertes. « Ils auront un brevet sur les balles de tennis vertes », a-t-elle dit, désignant les brevets du Broad, « nous aurons un brevet sur toutes les balles de tennis. »

Malgré cela, les actions d’Editas Medicine — société biotechnologique de Cambridge, au Massachusetts, qui utilise sous licence les brevets du Broad Institute — se sont redressées subitement à la suite du verdict de l’USPTO. « Nous sommes heureux de la décision de l’USPTO », a déclaré la présidente d’Editas, Katrine Bosley, « cette importante décision confirme l’inventivité du travail du Broad. »

« Je crois que cette décision est équitable », confie Catherine Coombes, avocate spécialisée en brevet d’invention de l’équipe d’experts en propriété intellectuelle de HGF, à York, au Royaume-Uni. L’invention de l’université de Californie couvrirait la structure de la molécule ARN sur laquelle repose l’étape clé de l’édition génomique CRISPR–Cas9, qui dirige l’enzyme Cas9 vers un lieu précis dans le génome. Mais faire en sorte que ce système fonctionne pour les cellules eucaryotes, c’est pousser la technologie un peu plus loin, avance Coombes.

Doubles troubles

Lors d’une conférence de presse tenue peu de temps après la délibération, l’avocate Lynn Pasahow, représentante de l’université de Californie, a déclaré que l’équipe ne savait pas encore si elle allait interjeter un appel.

Les deux équipes pourraient aussi parvenir à une entente, mentionne Kevin Noonan, associé au cabinet juridique McDonnell Boehnen Hulbert & Berghoff, à Chicago, dans l’État de l’Illinois. La bataille de brevet a été particulièrement féroce, étant donné que les inventeurs travaillaient tous pour des institutions académiques, et leur incapacité à atteindre un consensus avant la procédure en revendication de propriété d’invention en a surpris plus d’un.

Pour l’instant, la décision de l’USPTO engendre une certaine incertitude relativement aux entreprises qui voudraient peut-être utiliser la technologie pour les cellules eucaryotes, affirme Noonan. « Chacun conserve ses brevets », dit-il, « mais personne ne sait s’il faut obtenir des licences auprès des deux parties. »

Si les entreprises étaient forcées de demander des licences auprès des deux parties, le coût de la commercialisation de l’édition génomique CRISPR–Cas9 pourrait augmenter, ajoute-t-il. « Ce genre de dispute devrait pouvoir se régler au sein des universités », mentionne Noonan, « cette situation alimentera les discours de ceux qui croient que les universités ne devraient pas se mêler du brevetage. » Doudna a fait valoir lors de la conférence de presse que la bataille sur les brevets n’a pas gêné les recherches, vu la vitesse à laquelle les chercheurs ont adopté la technique et les entreprises se sont ruées pour la commercialiser.

À l’université du Delaware, à Newark, l’agent de transfert des technologies Joy Goswami a commencé à suivre le cas des brevets lorsqu’une importante société hésitait à accorder une licence sur certains brevets de son université relativement aux applications du CRISPR–Cas9 dans le domaine de l’agriculture. L’incertitude entourant le contexte des brevets a probablement nourri l’hésitation, dit-il – mais une telle incertitude n’est pas inusitée en biotechnologie, plus particulièrement au cours des premières années suivant une invention ingénieuse.

« Je ne sais pas si cela aura de grandes répercussions », dit-il, « dans l’ensemble, je peux affirmer que la prudence est de mise. »

traduction Stéphanie S.

Nature 542, 401 (23 February 2017) doi:10.1038/nature.2017.21502

« .. il y a une guerre des brevets, même si vous inventez quelque chose, l’institut Broad et UC Berkeley mènent une incroyable guerre des brevets. Cela est très fascinant à voir car ils s’accusent mutuellement de revendications frauduleuses et ils ont des gens qui disent : « J’ai signé mes notes ici ou là. » Cela ne sera pas réglé avant des années. Et quand cela le sera, vous pouvez parier que vous paierez un droit de licence important pour pouvoir utiliser cela. Est-ce vraiment peu cher ? Cela est peu cher si vous faites de la recherche basique et avez un labo. » Ellen Jorgensen.

Les scientifiques cherchent à cartographier toutes les cellules humaines

Les scientifiques ont lancé une initiative mondiale vendredi pour cartographier et décrire chaque cellule du corps humain dans un vaste atlas qui pourrait transformer la compréhension des chercheurs du développement humain et de la maladie.

L’atlas, qui est susceptible de prendre plus d’une décennie pour être complété, vise à tracer les types et les propriétés de toutes les cellules humaines dans tous les tissus et organes et à générer une carte de référence du corps humain en bonne santé, ont déclaré les scientifiques.

Les cellules sont essentielles à la compréhension de toute la biologie de la santé et de la maladie, mais les scientifiques ne peuvent pas encore dire combien nous en avons, combien de types différents, ou comment elles diffèrent d’un organe à l’autre, déclare un chef de projet.

« L’initiative d’un atlas de cellules humaines est le début d’une nouvelle ère de la compréhension cellulaire », a déclaré Sarah Teichmann, chef de génétique cellulaire à l’Institut Sanger de Grande-Bretagne, aux journalistes.

« Nous allons découvrir de nouveaux types de cellules, trouver comment les cellules changent au fil du temps lors du développement et de la maladie et acquérir une meilleure compréhension de la biologie » dit-elle.

Le projet est actuellement dirigé par une équipe de la Broad Institute du Massachusetts Institute of Technology (MIT) et de Harvard aux États-Unis et du Wellcome Trust Sanger Institute en Grande-Bretagne. Le plan est pour les équipes de recherche et les bailleurs de fonds du monde entier de collaborer.

En rendant l’atlas – essentiellement une vaste base de données de détails cellulaires – disponible gratuitement pour les scientifiques du monde entier, ils espèrent transformer la recherche par le développement humain et la progression des maladies comme l’asthme, la maladie d’Alzheimer et le cancer.

Le corps humain est fait de milliards de cellules – les unités fondamentales de la vie – qui se divisent, se développent et assument des fonctions distinctes dans l’embryon, aboutissant à différents types de cellules comme les cellules de la peau, les neurones ou les cellules adipeuses.

Jusque récemment, les connaissances scientifiques des cellules étaient limitées à ce qui peut être découvert en les observant au microscope ou en analysant génétiquement des centaines ou des milliers de cellules et de trouver leurs propriétés moyennes.

Mais les progrès technologiques dans un domaine connu comme la génomique unicellulaire signifient que les chercheurs peuvent maintenant séparer les cellules individuelles de différents tissus et organes, analyser leurs propriétés, mesurer et décrire quelles molécules sont produites dans chacune.

« Nous avons maintenant les outils nécessaires pour comprendre de quoi, nous sommes composés, ce qui nous permet d’apprendre comment fonctionne notre corps et de découvrir la façon dont tous ces éléments dysfonctionnent dans la maladie » a déclaré Aviv Regev du Broad Institute, qui travaille sur l’initiative.

« Nous croyons qu’une description réussie de toutes les cellules du corps humain en bonne santé aura un impact sur presque tous les aspects de la biologie et de la médecine dans les décennies à venir. »

Tom Heneghan, Reuters 14 octobre 2016, Human Cell Atlas

Une étude génétique offre le premier aperçu de l’origine biologique de la schizophrénie

L’analyse révèle un «élagage» excessif de connexions entre les neurones dans le cerveau prédisposé à la schizophrénie

Cambridge, Massachusetts (États-Unis), 26 janvier 2016

Une étude, basée sur l’analyse génétique de près de 65 000 personnes, a révélé que le risque de schizophrénie est augmenté si elles héritent des variantes spécifiques dans un gène lié à « l’élagage synaptique » — la suppression des connexions entre les neurones. Les résultats représentent la première fois que l’origine de cette maladie psychiatrique dévastatrice a été causalement liée à des variantes de gènes spécifiques et un processus biologique. Ils aident également à expliquer de vieilles observations : l’élagage synaptique est particulièrement actif durant l’adolescence, qui est la période typique de l’apparition des symptômes de schizophrénie, et les cerveaux de patients schizophrènes, tendent à montrer moins de connexions entre les neurones. Le gène, appelé composant 4 du complément (C4), joue un rôle bien connu dans le système immunitaire mais il a démontré également jouer un rôle clé dans le développement du cerveau et le risque de schizophrénie. L’analyse peut permettre à de futures stratégies thérapeutiques d’être dirigée aux racines du désordre, plutôt que juste ses symptômes.

Imaging studies found C4 at synapses of cultured human neurons. In this micrograph, C4 is stained green, cell bodies are blue, and synapses are red and white. Image courtesy of Heather de Rivera (McCarroll lab).

L’étude, publiée en ligne dans Nature, a été menée par des chercheurs de Broad Institute’s Stanley Center for Psychiatric Research, Harvard Medical School, et Boston Children’s Hospital. Ils comprennent l’auteur principal Steven McCarroll, directeur de génétique pour le centre de Stanley et professeur associé de génétique à l’école de médecine de Harvard ; Beth Stevens, un biologiste et professeur assistant de neurologie à Boston Children’s Hospital et membre de l’Institut Broad ; Michael Carroll, professeur à la faculté de médecine de Harvard et chercheur à Children’s Hospital ; et premier auteur Aswin Sekar, an M.D./Ph.D. étudiant à la Harvard Medical School.

L’étude a le potentiel pour relancer la recherche translationnelle sur une maladie débilitante. La schizophrénie est un trouble psychiatrique dévastateur qui affecte environ 1 % de la population et se caractérise par des hallucinations, repli sur soi, et un déclin des fonctions cognitives. Ces symptômes commencent plus fréquemment chez les patients lorsqu’ils sont adolescents ou jeunes adultes. D’abord décrit il y a plus de 130 ans, la schizophrénie n’a pas de traitements très efficaces et a vu quelques percées biologiques ou médicales au cours du dernier demi-siècle. Au cours de l’été 2014, un consortium international, mené par des chercheurs Broad Institute’s Stanley Center, a identifié plus de 100 régions du génome humain qui transportent les facteurs de risque de la schizophrénie. L’étude récemment publiée indique maintenant la découverte du gène spécifique étant à la base du plus fort de ces facteurs de risque et la relie à un processus biologique spécifique dans le cerveau.

« Depuis que la schizophrénie a été décrite la première fois il y a plus d’un siècle, sa biologie sous-jacente a été une boîte noire, en partie parce qu’il a été pratiquement impossible de modéliser le trouble (modeler le désordre) dans des cellules ou des animaux, » a déclaré McCarroll. « Le génome humain offre un nouveau moyen puissant pour cette maladie. Comprendre ces effets génétiques sur le risque est un moyen indiscret d’ouvrir cette boite noire, regarder à l’intérieur, et commencer à voir les mécanismes biologiques réels. »

« Cette étude marque un tournant décisif dans la lutte contre la maladie mentale, » dit Bruce Cuthbert, directeur par intérim du National Institute of Mental Health. “Parce que l’origine moléculaire des maladies psychiatriques est méconnue (peu compris), les efforts déployés par les compagnies pharmaceutiques à poursuivre de nouvelles thérapeutiques sont peu nombreux et espacés. Cette étude change la donne. Grâce à cette percée génétique nous pouvons enfin voir le potentiel pour des tests cliniques, la détection précoce, de nouveaux traitements et même la prévention.”

Le chemin vers la découverte

La remarquable histoire de la découverte a nécessité la collecte de l’ADN de plus de 100 000 personnes, l’analyse détaillée des variations génétiques complexes chez les plus de 65 000 génomes humains, l’élaboration d’une stratégie novatrice de l’analyse, l’examen des échantillons de cerveau post-mortem de centaines de personnes et l’utilisation de modèles animaux pour montrer qu’une protéine du système immunitaire joue aussi un rôle insoupçonné dans le cerveau.

La recherche mondiale des données trouve un indice ; de nouvelles recherches résolvent le mystère

Au cours des cinq dernières années, les généticiens dirigés par le Broad Institute’s Stanley Center for Psychiatric Research et ses collaborateurs dans le monde entier ont recueilli plus de 100 000 échantillons d’ADN humains provenant de 30 pays différents pour localiser les régions du génome humain hébergeant des variantes génétiques qui augmentent le risque de schizophrénie. Le signal le plus fort est de loin sur le chromosome 6, dans une région de l’ADN s’est longtemps associé à la maladie infectieuse, faisant suggérer quelques observateurs que la schizophrénie pourrait être déclenchée par un agent infectieux. Mais les chercheurs n’ont eu aucune idée qui des centaines de gènes dans la région étaient réellement responsable ou comment elle a agi.

Basé sur l’analyse des données génétiques, McCarroll et Sekar se sont focalisés sur une région contenant un gène rare appelé composant 4 du complément (C4). Contrairement à la plupart des gènes, C4 possède un haut degré de variabilité structurale : des personnes différentes ont différents nombres de copies et différents types du gène. McCarroll et Sekar ont mis au point une nouvelle technique moléculaire afin de caractériser la structure des gènes C4 dans les échantillons d’ADN humains. Aussi, ils ont mesuré l’activité des gènes C4 sur près de 700 échantillons de cerveau post-mortem. Ils ont constaté que la structure du gène C4 (ADN) pourrait prédire l’activité du gène C4 (ARN) dans le cerveau de chaque personne – et utiliser cette information pour impliquer l’activité des gènes C4 des données de génomes pour 65 000 personnes avec et sans la schizophrénie. Ces données ont révélé une corrélation frappante : les patients qui avaient des formes structurelles particulières du gène C4 ont montré une expression plus élevée de ce gène et, à leur tour, avaient un risque plus élevé de développer la schizophrénie.

Raccordement de causes et d’effets par le biais de neurosciences

Mais comment fonctionne exactement C4 — une protéine connue pour marquer des microbes infectieux pour la destruction de cellules immunitaires — affecte le risque de schizophrénie ?

Répondre à cette question exige la synthèse génétique et la neurobiologie. Beth Stevens, récente lauréate de la MacArthur « Genius Grant, » avait trouvé que d’autres protéines du complément dans le système immunitaire ont aussi joué un rôle dans le développement du cerveau en étudiant un modèle expérimental d’élagage synaptique dans le système visuel de la souris. Michael Carroll a longtemps étudié C4 pour son rôle dans les maladies immunitaires et mis au point des souris avec différents nombres de copies de C4. Les trois laboratoires ont entrepris d’étudier le rôle du C4 dans le cerveau.

Ils ont constaté que C4 a joué un rôle clé dans l’élagage des synapses durant la maturation du cerveau. En particulier, ils ont constaté que la C4 était nécessaire pour une autre protéine (un composant de complément appelé C3) pour être déposée sur les synapses, comme un signal que les synapses doivent être taillés. Ces données suggèrent également que plus un animal avait l’activité C4, plus les synapses ont été éliminées dans son cerveau à un moment clé dans le développement.

Les conclusions peuvent aider à expliquer le mystère de longue date de pourquoi les cerveaux de personnes atteintes de schizophrénie ont tendance à avoir un plus mince cortex cérébral avec moins de synapses que font des individus non affectés. Les travaux peuvent aussi aider à expliquer pourquoi l’apparition des symptômes de schizophrénie tend à se produire à la fin de l’adolescence : le cerveau humain subit normalement élagage synapse généralisée au cours de l’adolescence, en particulier dans le cortex cérébral (couche externe du cerveau, responsable de nombreux aspects de la cognition). L’élagage synaptique excessif durant l’adolescence et l’âge adulte, dû à une activité accrue de complément (C4), peut entraîner les symptômes cognitifs dans la schizophrénie.

“Une fois que nous avons eu les résultats génétiques devant nous, nous avons commencé à réfléchir à la possibilité que les molécules de complément étiquettent excessivement des synapses dans le cerveau en développement,” a déclaré Stevens. “Cette découverte enrichit notre compréhension du système du complément dans le développement du cerveau et dans la maladie, et nous n’aurions pas pu faire ce saut sans la génétique. Nous sommes loin d’avoir un traitement sur cette base, mais c’est excitant de penser qu’un jour, nous pourrons baisser le processus d’élagage chez certains individus et diminuer le risque. »

Ouvrir la voie vers la détection précoce et des thérapies potentielles

Au-delà de fournir les premières idées sur les origines biologiques de la schizophrénie, le travail soulève la possibilité que les thérapies pourraient un jour être mises au point qui pourrait « baisser » le niveau d’élagage synaptique chez les individus qui présentent les premiers symptômes de la schizophrénie. Ce serait une approche radicalement différente des traitements médicaux actuels, qui concernent seulement un symptôme spécifique de la schizophrénie (psychose) plutôt que les causes profondes de la maladie, et qui n’arrêtent pas de déclin cognitif ou autres symptômes de la maladie. Les chercheurs soulignent que les thérapies basées sur ces conclusions sont encore à des années sur la route. Pourtant, le fait qu’une grande partie est déjà connue sur le rôle des protéines du complément dans le système immunitaire signifie que les chercheurs peuvent puiser dans une mine de connaissances existantes pour identifier des approches thérapeutiques possibles. Par exemple, les médicaments anti-complément sont déjà en cours d’élaboration pour le traitement d’autres maladies.

« Pour la première fois, l’origine de la schizophrénie n’est plus une boîte noire complète, » a déclaré Eric Lander, directeur de l’Institut Broad. “Bien qu’il soit encore tôt, nous avons vu la puissance de comprendre le mécanisme biologique de la maladie dans d’autres contextes. Les premières découvertes sur les mécanismes biologiques du cancer ont conduit à de nombreux nouveaux traitements et des centaines de médicaments supplémentaires en développement. Comprendre la schizophrénie va accélérer de même progrès contre cette maladie dévastatrice qui frappe les jeunes. »

Le succès de cet effort a été activé par un financement catalytique du centre Stanley pour la recherche psychiatrique à l’Institut Broad et cet article a été consacré à Ted Stanley. « Grâce à la philanthropie, nous avons été en mesure de prendre des paris sur la science risquée avec des résultats potentiellement transformateurs, » a déclaré Stanley Center Director Steven Hyman. « Avec l’aide de Ted and Vada Stanley, les scientifiques de Broad ont la liberté de réunir les gens, les capacités et ressources de façon novatrice, à un rythme sans précédent. »

« Dans ce domaine de la science, notre rêve a été de trouver des mécanismes de la maladie qui conduisent à de nouveau types de traitements, » a déclaré McCarroll. « Ces résultats montrent qu’il est possible de passer de données génétiques à une nouvelle façon de penser comment une maladie se développe – quelque chose qui a été grandement nécessaire. »

Document cité : Sekar A, et al. risque de schizophrénie de variation complexe du composant 4 du complément. Nature. DOI : 10.1038/nature16549

News from the Broad Institute

Cpf1 une alternative à CRISPR-Cas9 ?

Le 25 septembre 2015, une étude publiée dans la revue Cell et dirigée par le biologiste Feng Zhang (Broad Institute, Cambridge, Massachussetts) présente la découverte d’une protéine appelée Cpf1 qui pourrait dépasser les limites de CRISPR-Cas9 (modification du génome sur embryon humain).

L’équipe de Zhang a repéré une autre protéine, Cpf1, associée à CRISPR. Comme Cas9, Cpf1 a la propriété de couper les brins d’ADN, avec cependant quelques différences qui la rendent supérieure.

Plus simple, Cpf1 « ouvre à beaucoup de possibilités pour des choses que nous ne pouvions pas imaginer » a déclaré l’épigénéticienne Luca Magnani du Collège impérial de Londres. Cette nouvelle enzyme surpassera-t-elle Cas9 en popularité ? « Il est encore trop tôt pour le dire » déclare Zhang. Il prévoit de poursuivre ses recherches pour mettre au point de nouvelles méthodes de « genome editing ».

source : Mc Governe Institute